
NASA Contractor Report 194475

J ,V </_;;/

P

Design and Implementation of a Distributed
Version of the NASA Engine Performance

Program

Jeffrey T. Cours

Ohio State University

Columbus, Ohio

March 1994

(NASA-CR-194475) OESIGN AND

IMPLEMENTATION OF A DISTRIBUTED

VERSION OF THE NASA ENGINE

PERFORMANCE PROGRAM Final Report

(Ohio State Univ.) 62 p

G3/61

N94-25179

Unclas

0207528

Prepared for

Lewis Research Center

Under Grant NAG3-1369

National Aeronautics and

Space Administration

(
(

Contents

1 Introduction 1

1.1 Introduction to Distributed NEPP 1

1.2 PVM Communicaticns Package 2

2 Background 3
2.1 Suivey of Fault Tolerant and Load Balancing Schemes 3

2.1.1 Arrival-, End-, and Continually-Balance Scheduling 3

2.1.2 Multiple Virtual Rings 4

2.1.3 Reliability Optimization 5
2.1.4 Contract Net Protocol 5

2.1.5 Summary ... 6

Algorithms 7
3.1 Distributed NEPP's Job Allocation Algorithm 7

3.1.1 Overview ... 7

3.1.2 Simple Distribution Algorithm 8

3.1.3 Multiple DL, tribution Algorithm 9

3.1.4 Fault-Tolerant Distribution Algorithm 11

3.2 Job Assignment Message Compression 15
3.3 Other Issues .. 17

3.3.1 Surviving a PVM Process Crash 17

3.3.2 Node Recovery .. 17

3.3.3 Advantages and Drawbacks of Centralized Ccntrol 17

4 Analytical Model 19

4.1 Analytical Model of the Algorithms' Performance 19

4.2 Corrected Efficiency ... 24

4.3 Examination of the Analytical Model's Implications 27

5 Results and Analysis 34
5.1 PVM 2.4 Times .. 34

5.2 Distributed NEPP's Performance _4

5.3 Analysis cf Model's Performance 39

Additional Research and Conclusions 48

6.1 Additional Research Possibilities 48

6.1.1 Dequeuing Redundant Jobs 48

6.1.2 Distributing the Host's Duties 48

6.1.3 Recovering From a Node Crash 50
6.2 Ccnclusicns .. 51

A How To Use Distributed NEPP 52

B The Distributed NEPP Source Code 54

ii

:!

List of Figures

2.1 Multiple Virtual Rings--overall organization 4

3.1 Organization of Distributed NEPP's input file 7

3.2 Arrangement of host and node processes on a cluster of 4 machines 8

4.1 Predicted execution time, one slow processor at relative speed 0.2 28
4.2 Predicted execution time, one slow processor at relative speed 0.03 29

4.3 Predicted speedup, one slow processor running at relative speed 0.03 30
4.4 Predicted efficiency, one slow node running at speed 0.03 31

4.5 Predicted corrected efficiency, one slow node running at speed 0.03 32

5.1 Mean speedup relative to fastest sequential time 35
5.2 Mean conventional efficiency, E = Sip 36

5.3 Mean corrected efficiency, E = Wr_q/Wpar 38

5.4 Simple Distribution algorithm speedup 39

5.5 Multiple Distribution algorithm speedup 40
5.6 Fault-Tolerant Distribution algorithm speedup 41

5.7 Relative error in Multiple Distribution algorithm, predicted versus observed wall clock time.. 43
5.8 Relative error in Multiple Distribution algorithm, predicted versus observed standard CPU

time ... 44

5.9 Relative error in Fault-Tolerant Distribution algorithm, predicted versus observed wall clock
time .. 45

5.10 Relative error in Fault-Tolerant Distribution algorithm, predicted versus observed standard
CPU time .. 46

6.1

A.1

A.2

Multiple host modification to Distributed NEPP. 49

Example defaults file for Distributed NEPP 52

Example PVM hosts file ... 53

iii

List of Tables

4.1

4.2

5.1

B.1

Notation for algorithm performance model
Additional notation section 4.2 introduces

Measured relative hardware speeds of different processor models

Summary of Distributed NEPP source files

20

25

42

55

iv

Chapter 1

Introduction

1.1 Introduction to Distributed NEPP

The NASA Engine Performance Program, or NEPP, is a program NASA engineers use to design and profile

aircraft engines [9]. The user will typically specify the engine's configuration, desired performance, and
constraints; NEPP will then calculate the sizes of the engine components necessary to satisfy all the design

parameters. Once it has sized the engine components, the program goes on to calculate how the engine will

perform in off-design cases: altitudes, speeds, and throttle settings different from those at which it designed

the engine. These off-design cases provide a natural point to break NEPP into parallel execution streams.

There are a number of practical reasons for speeding up NEPP by running it in parallel. The total time

NEPP takes to design and profile the engine depends very strongly on engine complexity, which profiling

options the engineer uses, and how many off-design cases she chooses to run: test cases on an IBM RS/6000

model 560 have ranged in time from 5 minutes to over 35. In fact, the only real limitation on the program's

run time is the fact that the engineer naturally tends to limit the complexity of the engine and parameters,

and the number of results the program produces, to keep the maximum run time within the limits of patience:

given a faster version of the program, she could easily increase the complexity of the problem to use the

additional computational power. Furthermore, [8] describes a new program called IPAS which uses the NEPP

code, running it hundreds or thousands of times in the course of designing and optimizing an entire airframe

and engine combination. If each NEPP run takes 5 minutes, and IPAS calls NEPP 100 times, IPAS will

spend over 8 hours just using NEPP, presenting an added incentive for developing a parallel, fault-tolerant
version of NEPP.

A less pragmatic but equally pressing reason for converting NEPP to run in parallel is that the conversion

presents the chance to develop a distributed application that operates under some unusual constraints.

Chapter 2 describes several proposals from the literature for ways to develop a distributed program. However,

most of these proposals work best for a transaction processing-type application in which assignments arrive at

different processing nodes throughout the system and at different times: many of these approaches consider

having all the assignments arriving at the same processor at the same time to be a worst-case situation.

In contrast, NEPP draws its work from a set of input files the engineer creates beforehand, allowing it

to control how many tasks arrive at a given time. Furthermore, there is only one copy of the input files

available at the beginning of the NEPP run, so all the tasks inherently arrive at the same node. NEPP's

design constraints allow, and even require, a different approach from the ones chapter 2 presents; chapter 3

describes the algorithms the program uses.

The new version of NEPP must meet requirements in addition to efficiently running in parallel. Engineers

will use the new program as a design tool, and other code like IPAS will rely on it. Therefore, the new version

of NEPP has to behave like its sequential counterpart: it must have the same user interface, return the same

results, and be at least as resistant to crashing as Sequential NEPP. Distributed NEPP, the new, parallel
version of NEPP, is a fault-tolerant, parallel application that looks like its sequential counterpart to the end

user.

2 CHAPTER i. INTRODUCTION

• Distributed NEPP runs on a cluster of workstations connected by a network. The program uses a

standard communications package to coordinate the activities of processes on each of the workstations,

allowing it a great deal of flexibility in the types of networks it can use. It makes very few assumptions

about the underlying file system and is capable of connecting a geographically separate, heterogeneous
collection computers to work in parallel and solve the computational problem. Furthermore, it is designed to

share the workstations with other applications, and its dynamic load-balancing system allows it to quickly

adapt to changing system loads.
Distributed NEPP's other features include the fact that, given a sufficiently complex program to analyze,

the program is faster than the original, sequential version of NEPP. It keeps the same user interface and

input file format as Sequential NEPP so it will be easy for the aviation engineers who use NEPP to switch to

the new application. Also, to give Distributed NEPP the same capabilities as sequential NEPP, and to avoid

having to maintain two versions of the same program, Distributed NEPP uses the same library of Fortran
subroutines that sequential NEPP draws upon. Finally, the program is fault-tolerant: if a processor crashes,

or becomes so heavily-loaded that Distributed NEPP can no longer use it to do useful work, Distributed
NEPP will recover and continue processing using the remaining nodes. As this report will discuss later, due

to the limitations of the communications package the program uses, if the communications software on a

processing node actually crashes then Distributed NEPP will crash as well, but it will recover gracefully if

one or more nodes begins to run so slowly that it effectively crashes. Furthermore, a planned upgrade to the
newest version of the communications package will remove the restriction against a node actually crashing,

and, using the new package, it should be relatively easy to modify Distributed NEPP to detect the fact that

a node has recovered and to begin to use that node to do useful work again.

1.2 PVM Communications Package

To reduce Distributed NEPP's complexity and to keep it from becoming dependent on any one particular

network protocol, this project uses the PVM software package [5]. PVM acts as an interface between Unix

appIications and lower-level network protocols so that, to the programmer, a networked collection of Unix
workstations looks like a partitioned-memory multiprocessor with extremely high process initiation and

message set-up times. PVM provides facilities for remote process initiation and termination, data format

conversion, and one-to-one and broadcast communication. It can link a heterogeneous collection of machines

and network links into a single virtual multiprocessor: version 2.4, the version Distributed NEPP uses,

supports computers ranging from the Sun SPARC to the Cray Y/MP.
Distributed NEPP gains several benefits from using PVM to handle all its inter-process communication.

The first advantage is that the program avoids becoming restricted to a particular type of computer or

network protocol. Also, PVM's abilities to link heterogeneous computers allows Distributed NEPP users to

run the application on whatever computers they have on hand. Finally, because PVM is an evolving software

package, as PVM's capabilities grow, so will Distributed NEPP's.

Chapter 2

Background

2.1 Survey of Fault Tolerant and Load Balancing Schemes

The literature describes several possible approaches to distributing a set of jobs to a networked collection

of processors. Some of these approaches address load balancing, others focus on fault-tolerance, but for one
reason or another, most are unsuitable for the Distributed NEPP application, necessitating the development

of a new approach.

2.1.1 Arrival-, End-, and Continually-Balance Scheduling

Ben Blake surveys several scheduling and load balancing systems in [2]. Three of the more interesting in-
clude arrival-balanced scheduling, end-balanced scheduling, and continually-balanced scheduling. An arrival-

balanced scheduler places each incoming job on the processor that will finish it first, given the current system

state, but it does not include provisions for moving jobs from one processor to another after it has already

scheduled them. In contrast, an end-balanced scheduler places each incoming job on the processor where

it initially arrives. Idle processors in the system query the other processors and take jobs from the most

heavily-loaded one. A continually-balanced scheduler generates a near-optimum schedule on a single proces-

sor, based on a priori knowledge of how long it will take to complete each job. The scheduling processor

then propagates the information to the other nodes in the system. In this scheme, incoming jobs go to the

processors that should finish them first, but the scheduler is free to migrate jobs as necessary.
Blake discusses three measures of scheduler performance: the total time it takes for the system to run

the application excluding scheduler overhead, the number of times a given scheduler executes during the

application run, and the number of job migrations the scheduler triggers. His simulation results assume

that the job execution times have a uniform distribution and that, in general, jobs appear on processors

throughout the system rather than all arriving at a particular processor. Furthermore, while [2] does not

explicitly state the assumption, a close reading of the paper seems to indicate that all processors in the system

ran at identical, and constant, speeds. (This assumption, in particular, does not apply to the Distributed

NEPP system, which has to be able to operate in a heterogeneous, dynamic environment.)

Blake's simulations show that the complexity of a scheduler can have a significant impact on its per-

formance. In particular, the more complex continually-balanced scheduler outperforms the other two when

several jobs arrive at a given processor simultaneously, with long periods of no job arrivals in between. On

the other hand, the simpler end-balanced scheduler outperforms its more complex counterpart when the

number of jobs which arrive simultaneously is small, but the jobs arrive frequently. The difference in perfor-
mance comes from the additional overhead that continually-balanced scheduling incurs. Depending on the

job arrival pattern, the end-balanced scheduler will execute from 0 to J - 1 times, where J is the number of

jobs the application must complete to finish execution. Also, the only global information the end-balanced
scheduler requires is the current load on each processor. On the other hand, the continually-balanced sched-

uler executes once for each set of jobs that arrives simultaneously, which explains its superior performance

3

4 CHAPTER 2. BACKGROUND

_Node Processor _ Level 1 TOP _O=_ Level 2 TOP (highest in this

hierarchy)

Figure 2.1: Multiple Virtual Rings---overall organization

when the job arrival pattern shows a few large lumps of arriving jobs rather than frequent arrivals of a small

number of jobs. The continually-balanced scheduler also requires more global information: to perform its

calculations, it has to know how long each job on each processor will take to complete. Finally, Blake's

simulations indicate that the continually-balanced scheduler tends to trigger more job transfers than the

end- or arrival-balanced schedulers, adding to the overhead it requires.

Unfortunately, Blake's results do not apply very well to Distributed NEPP. Blake does not address the

problem of fault-tolerance: if a processor receives a job and then becomes faulty, some other processor
must do the work of the faulty one for the application to finish. Also, in Distributed NEPP, all the jobs

arrive at the same processor simultaneously, but the continually-balanced scheduler, the one best suited

for such a situation, requires a priori knowledge of when each job will finish, something that is nearly

impossible to determine in the dynamic environment in which Distributed NEPP operates. However, the

Simple Distribution algorithm that chapter 3 describes is, in many respects, similar to Blake's arrival balanced
scheduler, in which arriving jobs go to the processor most likely to finish them earliest.

2.1.2 Multiple Virtual Rings

Another approach to dynamic load balancing is the Multiple Virtual Rings, or MVR, protocol J. G. Vaughan

presents in [15] which organizes the processors into a hierarchy of rings (figure 2.1). The Multiple Virtual

Rings protocol calls for tokens to circulate around the rings at each hierarchical level, determining and

balancing loads. Vaughan calls the processors that manage the tokens Token Origination Processors or
TOPs. At the lower level rings, the TOP for the ring is the processor that connects the ring to the next

higher ring in the hierarchy; the algorithm arbitrarily designates one of the processors in the highest level

ring as the ring's TOP. At the start of each load balancing cycle, the TOP in each ring emits a token.
The token circulates around the ring and determines the maximally- and minimally-loaded ring processors.

When the token returns to the TOP, the TOP sends a message through the maximally loaded-processor to

the minimally-loaded one that gives the minimally-loaded processor the option of accepting work from the

maximally-loaded one. TOPs are also responsible for maintaining information about the load level of their

rings and transferring work up and down the ring hierarchy, so that the load across the entire system will

eventually balance.

Vaughan's simulation results indicate that MVR is effective at balancing the system load provided that,

before the algorithm starts, the jobs are spread out through the processors. However, [15] indicates that if

2.1. SURVEY OF FAULT TOLERANT AND LOAD BALANCING SCHEMES 5

one processor has all the jobs at the beginning of the load-balancing process, the most common situation for

Distributed NEPP, the system takes a significant amount of time to reach a balanced state.

MVR's main advantage is that its distributed approach to load balancing helps to preven t bottlenecks,
since processors need load information from others in a local neighborhood rather than globally. The draw-

backs to the scheme are its complexity, the fact that it requires the ability to checkpoint and transfer jobs,

and the relatively high number of messages per job transfer. In fact, as [15] indicates, the number of over-

head messages divided by the number of jobs the processors transferred ranged from 15 to 35, implying that
overhead could be quite expensive on a system with high communication set-up costs. Furthermore, [15]

does not address the question of what to do if a processor fails.

2.1.3 Reliability Optimization

Vaughan and Blake's approaches ([15] and [2]) try to minimize the amount of time the system takes to run

an application, but they do not consider system reliability or fault tolerance. In [12], on the other hand, Sol

M. Shatz, Jia-Ping Wang, and Masanori Goto attempt to maximize the chance that the system will finish the

job, but they do so at the expense of poor load balancing. Their approach increases reliability not through

adding redundant hardware or software but by allocating jobs to processors in such a way as to minimize
the chance that a processor or link will fail while the application is running. Using a priori knowledge of

each processor's and link's reliability and the amount of time each job in the application takes to run, they

define a cost function which increases as reliability decreases. In essence, the cost function captures the idea

that shorter jobs should go to less reliable processors to minimize the chance that the processor will fail

during the job, and also that if jobs must communicate with each other, then those jobs requiring the most

communication should go to the processors with the most reliable communications links.

Once they have defined their cost function, Shatz et. al. attempt to allocate jobs to the processors in such

a way as to minimize the cost and thereby maximize reliability. They present an algorithm, based on the

Artificial Intelligence algorithm "A*", which will find the optimum allocation of jobs for maximum reliability.

Unfortunately, in the worst case the exact algorithm requires time that is exponential in the number of jobs,

so Shatz et. al. also present a number of polynomial-time algorithms that will find near-optimal solutions
based on a set of heuristics:

1. More reliable processors should have more work to do, and therefore spend more time calculating, than

less reliable processors.

2. Jobs that communicate heavily with each other should go on the same or nearby processors.

3. Jobs that communicate most heavily with several other jobs should go on "centrally-located" processors,

processors which can most reliably reach other processors through communication links.

Using these heuristics, they develop algorithms that run in times ranging from O(J 2) to O(pJ), where p is

the number of processors in the system and J is the number of jobs the application must schedule.

In [12], Shatz et. al. do not analyze the effects their approach has on total execution time. However,
note that heuristic 1, in particular, tends to work against load balancing by exaggerating the load on more

reliable processors at the expense of less reliable ones. Furthermore, they do not address the question of
how to calculate or estimate processor or communication link reliability in a dynamic, heterogeneous system

such as the environment Distributed NEPP supports. Accordingly, as later sections will explain, Distributed

NEPP attempts a more dynamic approach to task allocation and incorporates redundancy in time, resulting

in a program that uses computer resources less efficiently than the scheme [12] proposes, but which achieves

better load balancing along with high reliability. On the other hand, future versions of Distributed NEPP
could benefit from incorporating heuristics 1 through 3, above, into the scheduling process, assuming the

program could somehow estimate system reliability values and job completion times.

2.1.4 Contract Net Protocol

None of the scheduling approaches so far address both load balancing and fault-tolerance. One approach

that does appears in [13], where Reid G. Smith presents the Contract Net Protocol. In the Contract Net

6 CHAPTER 2. BACKGROUND

Protocol, processors with an excess of jobs, or with jobs that would be better suited to other processors,

broadcast a message describing the job they wish to contract out, or deliver to another processor. Processors
that are idle can then respond to this job announcement message and bid on the contract. The contracting

processor, the one offering the job, selects one of the bidders and assigns it the job. All messages include an

expiration time. If a contractor does not receive any responses to its job announcement by the expiration

time it attached to the message, it knows that there are no nodes in the system capable of handling its job.

Similarly, if a bidding node does not receive a response to its bid by the expiration time, it knows that it did

not get the contract. On the other hand, since a node is free to choose whether or not to bid on a job, the

system inherently balances its load as long as only lightly-loaded nodes bid on job contracts. Furthermore,

the contracting node can select the most suitable bidder to receive the job, providing the intriguing possibility

of incorporating heuristics 1-3 from [12].
In addition to inherently balancing the system load and handling a dynamic, heterogeneous environment,

the Contract Net Protocol's bidding system allows nodes to enter and leave the system very easily. A

contractor can request status reports from a node running one of its jobs, so the contractor will know if the
node fails and can solicit new bids for the contract. If a new node enters the system, it can immediately begin

bidding on new job assignments without having to update information on other nodes. Also, the Contract
Net Protocol avoids bottlenecks due to centralized control.

Unfortunately, the Contract Net Protocol has one major drawback: high communications overhead.

Transferring a job or group of jobs from one node to another requires, under ideal circumstances, the

following messages:

• one multicast to announce the job

• one message from each bidding node to bid on the job

• one message from contractor to bidder to award the job

While each message could be quite small, the protocol requires a large number of them for each job, or group

of jobs, that one processor transfers to another. This large number of messages could introduce a great deal

of inefficiency when running on any system suffering from high communications set-up costs, such as the

communications package Distributed NEPP uses. The large number of messages appears to result from the

fact that no processing node maintains information about other nodes' load levels, since if nodes knew each

others load levels, the contractor could assign the .job to the recipient directly. This same factor makes the
protocol's fault-tolerant aspects simple and elegant, so changing it might prove difficult.

2.1.5 Summary

Unfortunately, none of these approaches is entirely suitable for Distributed NEPP. Vaughan's Multiple

Virtual Rings and Smith's Contract Net Protocol both suffer from requiring a large number of messages

per job transfer, a defect that could devastate Distributed NEPP's performance given the high message

set up cost it faces. Furthermore, neither approach has been optimized for the case in which all the jobs

arrive simultaneously at a single processor, which is the usual case when Distributed NEPP begins. Shatz

et. al. provide a useful set of reliability-improving heuristics that later versions of Distributed NEPP

might incorporate, but they do not address the question of how to obtain accurate reliability estimates for

the components involved in the networks they study, and their approach increases reliability but does not

guarantee that the system will be reliable in the face of node failures. Finally, the load balancing algorithms

that Blake presents do not explicitly address the problem of fault-tolerance. However, as Chapter 3 shows,

his arrival-balanced scheduling algorithm is similar in many ways to the algorithm Distributed NEPP uses.

Chapter 3

Algorithms

3.1 Distributed NEPP's Job Allocation Algorithm

3.1.1 Overview

The job scheduling algorithms in section 2.1 all have their strengths and weaknesses, and the algorithm
Distributed NEPP uses is no exception to the trend. Since no perfect job allocation algorithm exists, one of
the challenges in developing Distributed NEPP was to create an algorithm whose strengths would improve the
program's performance but whose weaknesses would have very little or no impact on this specific application.

Figure 3.1 shows the organization of the input file that both the sequential and the distributed versions
of NEPP read. The design point portion of the file tells NEPP the components that make up the engine it
will analyze, how those components connect to one-another, what sort of performance the engineer expects
from the engine, and for what throttle setting, altitude, and speed NEPP should calculate the sizes the
various engine components. Then, each off-design case has NEPP calculate the engine's performance at a
throttle setting, speed, or altitude different from the ones the design point specifies, but using the same
engine component sizes NEPP calculated for the design point. The off-design cases provide a natural way to
break sequential NEPP into threads that can execute in parallel. Each off-design case represents a separate
job that Distributed NEPP can schedule on a processor. The off-design cases do not strongly depend
on one-another for most engine configurations, although, as this section discusses later, having the nodes
process them in the same order in which they appear in the input file generally improves execution time.
Since the off-design cases do not strongly depend on each other, the algorithms this section presents treat
them as independently-schedulable, atomic jobs for the node processors to compute; the more sophisticated
algorithms try to schedule consecutive off-design cases on the same node processor. Finally, to keep the

terminology in this discussion as general as possible, the rest of this chapter refers to the off-design cases
simply as jobs.

In order be as flexible as possible, Distributed NEPP does not assume that the cluster of processors it is
using has any sort of network file system. This restriction against assuming a network file system complicates
Distributed NEPP's design slightly, but it lets users set up ad-hoc networks of machines at geographically
separate sites and makes a centralized scheduling and load balancing approach more practical. Instead of

DesignPoint Design
Case

Design
Case

Design """
Case

Figure 3.1: Organization of Distributed NEPP's input file.

8 CHAPTER.3. ALGORITHMS

Machine 1

Machine 2

Machine 3

Machine 4

Figure 3.2: Arrangement of host and node processes on a cluster of 4 machines.

assuming that all processors can get access to the input files, as would be the case with a network file system,

Distributed NEPP assumes that only one processor can access them, but that the one processor has access

to all the input files. To run Distributed NEPP, the user starts a host program on the one processor that can

access the input files. The host, in turn, starts a node program running on each processor, including the one

where the host resides. Figure 3.2 shows a 4-machine cluster with one host and four node processes, with

arrows representing communication paths between the processes. The host process has guaranteed access

to the input files, so it is responsible for assigning work to the nodes, collecting their results, and writing

the results to the output file. This centralized scheme simplifies load balancing and fault-tolerance at the

expense of requiring the host to explicitly pass all information to and from the nodes.

3.1.2 Simple Distribution Algorithm

The simplest approach to distributing the load, and the one that the first version of Distributed NEPP

used, is for the host to send individual jobs to the nodes on a first-come, first-served basis. The first step in

the algorithm is for the host to read the design point information and broadcast it to the nodes. The host

and the nodes compute the design point information, determining the sizes of the engine components the

engineer has specified in the input files. As each node finishes its computation, it sends a READY message

to the host. Having both the host and the nodes calculate the design point is not strictly necessary, but it

proved to be the easiest way to initialize the data structures in the NEPP library.

As soon as the host gets a READY message from a given node, the host sends that node the next job

from the input file. When each node finishes calculating the results of the job the host has sent it, the node
sends the results back to the host in a DONE message. Upon receiving a DONE message, it unpacks the

results, and, if there are any jobs left in the input file, the host sends the next one to the node. This process

continues until there are no jobs left in the input file. For the sake of discussion, call this approach, which

appears below in pseudocode form, Simple Distribution:

Algorithm: Simple Distribution, Host Portion

begin

broadcast design point and associated information
calculate design point
while (there are jobs left in the input file)

begin

(blocking) receive the next READY or DONE message from a node
reply to the node with the next job

end

3.1. DISTRIBUTED NEPP'S JOB ALLOCATION ALGORITHM 9

broadcast a DIE message
end

Algorithm: Simple Distribution, Node Portion

begin

(blocking) receive design point and associated information
calculate design point
send READY message to host
(blocking) receive the next message from the host
while (have not received a DIE message from the host)

begin
process the job

send the results to the host in a DONE message

(blocking) receive the next message from the host
end

end

The Simple Distribution algorithm has many advantages. The approach does not require the host or the

nodes to maintain a job queue, the load-balancing granularity is one job, and this algorithm balances the

loads very effectively. Since a node never gets a new job until it has finished with its current one, faster
nodes automatically receive more work than slower ones, and the algorithm reacts quickly and naturally

to changing system loads and processor speeds. Also, the algorithm's communications overhead is quite

low compared with the approaches in Chapter 2: it requires only one message per job transfer if, like the

algorithms in section 2.1, we neglect the messages that return the nodes' results to the host. In many

ways, this algorithm is similar to Blake's arrival-balanced algorithm, which places newly-arriving jobs on the

processor most likely to finish them first.

Unfortunately, the Simple Distribution algorithm has some very serious drawbacks, including the fact
that it makes no provisions for fault-tolerance: if a node crashes after the host as already assigned it a job,

the host will continue assigning jobs to nodes and receiving results until it reaches the end of the input file.

Then, the host will hang forever waiting for the results from the crashed node.

Another problem with the algorithm is that, as this section mentioned earlier, the off-design cases are
not entirely independent. The NEPP library uses an iterative algorithm to calculate the results for each

off-design case, and it uses the results of the last off-design case as a starting point for converging to the

next. Depending on the engine configuration, if the library starts its calculations using the wrong set of

data, it may take significantly longer to converge to a result. In fact, given a particularly sensitive engine

configuration, the code may not converge at all. Since the Simple Distribution algorithm distributes one job
at a time, on a first-come, first-served basis, it tends to scatter jobs almost randomly among the nodes: even

if the engineer has arranged the input file in such a way as to speed convergence, Distributed NEPP would
not be able to use that fact to its advantage, and it could suffer performance degradation or, in the worst

case, even fail to converge on input files that Sequential NEPP can process with no trouble.

The final drawback to using the Simple Distribution algorithm is the fact that, while it requires only one

message per job transfer, the algorithm still has to pay the PVM communication package's high message set-

up costs once for each job the host sends to the nodes. With the job compression system section 3.2 describes,

a single job message generally contains about 4 double precision numbers and 4 integers. Furthermore, the

Size of the message decreases the closer each job's parameters are to the preceding one's. Sending consecutive

jobs to the same node, and packing more jobs into each assignment message, would result in a more efficient

algorithm.

3.1.3 Multiple Distribution Algorithm

The next step in complexity is the Multiple Distribution algorithm, an algorithm that packs multiple jobs

into each job assignment message. This algorithm requires that each node have a job queue. As the nodes

send back their results, the host monitors the nodes' queues, and, whenever the number of job assignments

10 CHAPTER 3. ALGORITHMS

in a node's queue drops below a threshold value, the host sends that node a single assignment message

containing several job assignments. Here is the pseud0code for the Multiple Distribution algorithm:

Algorithm: Multiple Distribution, Host Portion

begin
broadcast design point and associated information
calculate design point
while (there are jobs left in the input file)

begin

(blocking) receive the next READY or DONE message from a node
if node's queue size is less than minimum threshold size

begin

pack an assignment message with enough jobs to fill the node's queue to
maximum threshold size

send the assignment message to the node
end

end
while (the host has not received all results)

begin

(blocking) receive the next READY or DONE message from a node
end
broadcast a DIE message

end

Algorithm: Multiple Distribution, Node Portion

begin

(blocking) receive design point and associated information
calculate design point
send READY message to host
fblocking) receive the next message from the host

the message was not a DIE message

begin
enqueue, in order, all job assignments from this message

end

while (have not received a DIE message from the host)

begin

while (there is not a message waiting from the host)
and (the job queue is not empty)

begin

dequeue the next job from the job queue

process the job
send the results to the host in a DONE message

end

(blocking) receive the message from the host
if the message was not a DIE message

begin
enqueue, in order, all job assignments from this message

end

end

end

While the Multiple Distribution algorithm requires the nodes to maintain job queues and is more compli-

cated than the Simple Distribution algorithm, the former has several advantages over the latter. The most

obvious advantage of the Multiple Distribution algorithm, and the one that leads to the greatest expected

performance improvement, is the fact that the algorithm generates fewer messages per job assignment than

the Simple Distribution algorithm does. Even though the average message length may be longer, with a

3.1. DISTRIBUTED NEPP'S JOB ALLOCATION ALGORITHM 11

communications system like PVM, in which message set-up time tends to be the dominant cost in relatively

short messages, decreasing the number of messages at the cost of increasing message length can improve

overall performance. For example, it takes PVM a constant 3.9 milliseconds to set up a message, but only

0.5 microseconds per byte to pack and send it on an IBM RS/6000 model 560. Therefore, it will take the

package 3.95 milliseconds to send a 100 byte message, or 4.4 milliseconds to send a 1000 byte message: the

setup cost dominates message transmission time for short messages.

The Multiple Distribution algorithm has some other advantages as well. First, since Distributed NEPP's

job compression System generates shorter messages for jobs with similar parameters, and since jobs with

similar parameters tend to occur one after another in the input file, the Multiple Distribution algorithm's

job assignment message tends to use fewer bytes per job than the Simple Distribution algorithm's does. Also,

since the nodes tend to get groups of jobs that are similar in nature, they will tend to converge towards a
result more quickly for each job, potentially improving Distributed NEPP's overall performance. In addition,

the Multiple Distribution algorithm tends to maintain a job order for each node closer to the one in the
input file, so the nodes will be more likely to converge to a result when they analyze an especially sensitive

engine. Finally, the host does not have to wait until the node's job queue is empty before sending it a new
set of jobs. The "minimum threshold size" parameter of the algorithm on page 10 allows the host to adjust
how much work the node has left before the host sends it more. In Distributed NEPP, the host sends a

block of jobs to a node whenever the node is working on the last job in its queue, avoiding the period in the

Simple Distribution algorithm when the node is idle and waiting for a new job from the host.

Unfortunately, the Multiple Distribution algorithm is still not fault-tolerant. Just as with the Simple

Distribution algorithm, if a node crashes, the host will distribute the remaining jobs and then hang forever

waiting for the crashed node's results. Also, this algorithm can perform worse than the Simple Distribution

algorithm in a heterogeneous environment because it increases the grain size from a single job to a group of

jobs: with the Simple Distribution algorithm, the minimum time to finish the application is the time it takes
the slowest node to execute 1 job. The minimum time for the Multiple Distribution algorithm is the time it

takes the slowest node to finish a queue-full of jobs, so if one node runs very slowly, the whole application
will have to wait for that node to finish.

3.1.4 Fault-Tolerant Distribution Algorithm

The Fault-Tolerant Distribu_ion algorithm adds fault-tolerant aspects to the Multiple Distribution algorithm

and solves the increased granularity problem. The basic idea of this algorithm is that it acts like the Multiple

Distribution algorithm until it runs out of jobs in the input file. Then, the host begins sending replicas of

unfinished jobs to the nodes. The nodes process the copied jobs just as they would any other job and return

the results. The host, in turn, takes whichever of the replicated results arrives first and discards all other

copies of those results. So it can keep track of which results it has, which it needs, and which it has replicated,

the host mirrors each node's job queue internally. Whenever it gets the results of a particular job from a

node, the host searches its internal queue structure for a matching job record. If the new results are the

first set of results for that particular job, the host accepts them and marks all other copies of that job in

its internal queues as REDUNDANT. Then, when the host receives the other, redundant copies of the job

results, by consulting its internal queue structure it will know that those results are REDUNDANT and can

discard them. Note that the node's portion of this algorithm is identical to the node's part of the Multiple

Distribution algorithm. Here is the pseudocode for the host's part:

Algorithm: Fault-Tolerant Distribution, Host Portion

begin

broadcast design point and associated information
calculate design point
while (there are jobs left in the input file)

begin

(blocking) receive the next READY or DONE message from a node
dequeue the corresponding entry from the host's queues

if the host's queues show the results as REDUNDANT

12 CHAPTER 3. ALGORITHMS

begin
discard the results

end

else

begin
record the results

search the host's queues, mark every other copy of those results as
REDUNDANT

end

if node's queue size is less than minimum threshold size

begin

pack an assignment message with enough jobs to fill the node's queue to
maximum threshold size

send the assignment message to the node
enter the jobs into the host's queues with type NORMAL

end

end
while (the host has not received all results)

begin

(blocking) receive the next READY or DONE message from a node

dequeue the corresponding entry from the host's queues
if the host's queues show the results as REDUNDANT

begin
discard the results

end

else

begin
record the results

search the host's queues, mark every other copy of those results as

REDUNDANT
end

if the node's queue size is less than the minimum threshold size

begin
select a set of jobs to duplicate

pack the duplicate jobs into an assignment message

send the assignment message to the node
enter the jobs into the host's queues with type NORMAL

end

end
broadcast a DIE message

end

One or more node failures will not stop the Fault-Tolerant Distribution algorithm from finishing its

computations: if a node fails before it has a chance to request a job, the host will send the work that node

might have gotten to a different node instead. Furthermore, when the host reaches the end of the input file

and begins replicating jobs, it will naturally replicate the work it sent to the failed node since that node will

not have been able to respond with its results; the host will then receive the replica results from a healthy

node and finish its computation. In fact, as long as the host and one node remain alive and have working

communications links between them, this algorithm will be able to finish computation. Also, if a failed node

or link comes back on line, as long as the recovered node signals its return with a READY message or the

DONE message from its last assignment, the host could reintegrate it into the application. (Note, however,

that Distributed NEPP does not yet include the capability to recover and reinitialize a crashed node as
sections 3.3 and 6.1 explain. This limitation results more from lack of development time than from any limit

of the Fault-Tolerant Distribution algorithm.)

3.1. DISTRIBUTED NEPP'S JOB ALLOCATION ALGORITHM 13

The host, of course, is the system's Achilles' heel: if the host crashes the whole application will die.

However, since Distributed NEPP is a single-user program, and since the engineer who uses it will probably

run the host program from the workstation on her desk, a host crash in practical terms most likely means

that a more serious problem occurred such as the workstation failing, in which case restarting Distributed

NEPP is likely to be the least of the engineer's concerns. In addition, section 6.1 mentions some possible

solutions for the host failure problem.

Another benefit of the Fault-Tolerant Distribution algorithm is that it decreases the minimum time the

application takes to finish its work. Recall that for the Simple Distribution algorithm, the minimum time for

the application to finish is the time it takes for the slowest node to complete one job, neglecting initialization

and communication overheads. For the Multiple Distribution algorithm, the minimum time increases to

the time it takes for the slowest node to finish all the jobs the host sent it in a single assignment message.

Neither of these minima holds for the Fault-Tolerant Distribution algorithm: if one node is running so slowly

that it holds up the whole application, the host will simply replicate any jobs remaining on the slow node,

send them elsewhere for processing, and take whichever results come back first. In this case, the minimum

time to complete the application is not entirely clear, but it does appear to be less than that of the Simple

Distribution algorithm.
The main drawback to the Fault-Tolerant Distribution algorithm is that it increases the overall system

load. Section 4.1 models the algorithm in more detail, but it is clear intuitively that as the number of job

copies increases, nodes will tend to spend more of their time processing jobs that will eventually become

redundant. In effect, the algorithm trades efficiency for speed and fault tolerance.

One issue the algorithm on page 11 glosses over is the process by which the host chooses a job to replicate.

In general, the host uses some heuristics:

1. No node should ever have two replicas of the same job.

2. Replicate a job that is currently at the tail of a node's queue in preference to one at the head.

3. Replicate a job that currently has fewer replicas in the nodes' queues in preference to one that has

more replicas.

4. When building a single assignment message that contains replica jobs, jobs that occurred next to each

other in the input file should occur next to each other in the assignment message.

The NextJobToReplicate algorithm, below, will search the host's internal representation of the nodes' queues

to find a candidate job to replicate using the above heuristics:

Procedure NextJobToRepicate (node, job, exclude, threshold)

Pass by reference: node, job, threshold

Pass by value: exclude

local variables: MinReplicas, AllRedundant, done, ReturnValue

begin
done - FALSE
ReturnValue = SearchForCandidate (node, job, threshold, exclude, MinReplicas,

AllRedundant)
done = (ReturnValue is not NULL) or (AllRedundant is TRUE)
if (not done)

begin

threshold = MinReplicas

ReturnValue = SearchForCandidate (node, job, threshold, exclude, MinReplicas,

AllRedundant)
end
return (ReturnValue)

end

Procedure SearchForCandidate (node, job, threshold, exclude, MinReplicas, AllRedundant)

pass by reference: node, job, MinReplicas, AllRedundant

14 CHAPTER 3. ALGORITHMS

pass by value: threshold,exclude

begin

MinReplicas = infinity
AlIRedundant = TRUE
done = FALSE

StartNode = node

StartJob = job
while (done _ TRUE)

begin

if (job is not redundant)

and (node ¢ exclude)

and (exclude does not already have a copy of job)

begin
AllRedundant = FALSE

MinReplicas = min (MinReplicas, this job's replicas)

if (this job's replicas _< threshold)

begin
done = TRUE

ReturnValue = job
end

end

if (job ¢ tail of queue[node])

begin
job = Next:lobCloserToTail(job)

end

else

begin
do

begin

node = (node q- 1) mod NumNodes
end

while (node ¢ StartNode)

and ((queues[node] is empty) or (node = exclude))
job = head of queues[node]

end

if(node = StartNode) or (job= StartJob)

begin
ReturnValue = NULL

done = TRUE

end

end

return (ReturnValue)
end

Other procedures call NextJobToReplicate to decide which, if any, job they could replicate. The "node"

and "job" arguments act as pointers to the next node and job NextJobToReplicate will examine to determine
whether or not it can safely replicate that job according to the heuristics. Since NextJobToReplicate starts

"job" at the tail of a given queue and increments it towards the queue's head, the routine implicitly satisfies

heuristic 2. (Note the assumption that the procedure that first initializes "node" and "job" should initialize

them to the tail of a queue.) NextJobToReplicate uses "threshold" to satisfy heuristic 3: the procedure first

tries to find a candidate to replicate using the current threshold value. Only if it fails in its search does it
increase the threshold value to the minimum threshold necessary to find a job to replicate. Other procedures

use the "exclude" argument to make sure that NextJobToReplicate does not choose a candidate job from

the queue of the node that is currently looking for replicas.

3.2. JOB ASSIGNMENT MESSAGE COMPRESSION 15

NextJobToReplicate calls SearchForCandidate to search the queue structure for a node to replicate.

SearchForCandidate loops through the host's internal copy of the nodes' queues looking for a non-redundant

job that satisfies the four heuristics. It has to handle two unusual cases: there may be no non-redundant jobs

available, or it may be that every possible candidate has more replicas already in existence than the "thesh-
hold" value. If there are no non-redundant jobs available, SearchForCandidate sets the "AllRedundant" flag.

Also, it sets "MinReplicas" to the minimum number of replicas of any candidate job it encounters during

its search so that NextJo!_ToReplicate can raise the threshold if necessary. If, the first time NextJobTo-

Replicate calls it, Searchl_orCandidate returns a value in "MinReplicas" greater than NextJobToReplicate's

search threshold, NextJobToReplicate sets the current threshold equal to "MinReplicas" and calls Search-

ForCandidate again. In this way, NextJobToReplicate tends to return a job with the fewest possible copies

for its caller to replicate.

3.2 Job Assignment Message Compression

When writing a parallel program, relatively small changes in the code's efficiency can translate to large

changes in the efficiency of the overall application. According to Amdahl's Law [14], for p processors

s < 1 (3.1)
- Y,+h/p

where S is the speedup factor, f, is the fraction of the parallel program's code that must run sequentially,

fp is the fraction that can run in parallel, and p is the number of processors available to the program, f,

represents a bottleneck in the parallel program: by decreasing it even slightly, the whole application benefits.
Distributed NEPP's job assignment compression scheme is designed to reduce the communications over-

head of the host, the application's bottleneck. Since PVM has a high communications set up cost but

relatively low cost per byte, reducing message size will not have as much of an effect on application run time

and asymptotic speedup as reducing the number of messages, but it improves performance, nonetheless.

Job assignments consist of 7,803 separate variables: 4,800 single precision floating point numbers, 3,001

double precision floating point numbers, and 2 integers. However, typically very few of these elements

typically change from one job to the next in the input file. Therefore, instead of sending all 7,803 elements,
which would result in a message length of 43,216 bytes on the IBM RS/6000's that acted as Distributed

NEPP's testbed, the host program sends only the difference between the node's previous job assignment and

the current one. The message then consists of a sequence of "integer-new value" pairs, where the integer

indicates which assignment element to change, and the "new value" specifies the new value of that element.

This compression scheme reduces the size of a typical assignment to 3 or 4 double precision floating point

numbers and an equal number of integers, for a message size of about 48 bytes per assignment.

To save memory, the host does not maintain an image of the most recent job assignment for each node.

Instead, it keeps a single master job assignment image, and, for each node, a set of difference flags. When

the host builds a new assignment message to send to a node, it sets a difference flag in every node's flag set

for elements that differ between the new and previous assignments. Once it actually sends the assignment

message to a node, the host clears that node's difference flags. Here is the pseudocode for the algorithm:

When creating an assignment:

begin

fori = 0 to NumAssignmentElements- 1

begin

ifMasterAssignmentlmage[i] ¢ NewAssignmentlmage[i]

begin

forj = 0 to NumberOfProcessors - i

begin

DifferenceFlag[ij] = TRUE
end

MasterAssignmentImage[i] = NewAssignmentImage[i]

16 CHAPTER 3. ALGORITHMS

end

end
ElementCount = 0
for i = 0 to NumAssignmentElements- 1

begin

if DifferenceFlag[i, DestinationNodeNumber] = TRUE

begin
ElementCount = ElementCount + 1

end

end

pack ElementCount into assignment
for i = 0 to NumAssignmentElements - 1

begin

if DifferenceFlag[i, DestinationNodeNumber] = TRUE

begin

pack i into assignment message

pack MasterAssignmentImage[i] into assignment message
end

end

end

When sending one or more assignments to a node:

begin

for i = 0 to NumAssignmentElements- 1

begin

DifferenceFlag[i, DestinationNodeNumber] = FALSE
end

end

Each difference flag occupies only 1 byte, so the difference flag system requires only 18% as much memory

per node as storing a whole image per node would need, at the expense of possibly sending an extra message

element if the element changes to a different value and then changes back again between assignments to a

particular node.

This message compression scheme provides even greater benefits under the Multiple Distribution and

Fault-Tolerant Distribution algorithms than it does with the Simple Distribution algorithm. Since successive

jobs in the input file tend to have fewer differences between their parameters, when the host packs several

successive jobs into a single assignment message, the first assignment will typically be quite large, but the

rest will tend to be smaller because of the similarities between successive jobs, resulting in an overall savings

in message length.

It is worth noting that the algorithm on page 15 has to pack, along with each element it sends, the index

of the differing element. As the number of differences increases, it will eventually become less expensive

to send the entire contents of "NewAssignmentImage" rather than sending each individual element along

with an integer describing which element it is. On the RS/6000, for example, double precision floating point

numbers occupy 8 bytes, and single precision floating points and integer values occupy 4 bytes. If a message

contains 4,800 single precision floating point numbers and 402 double precision floating point numbers, its

total length will be 43,224 bytes, including the integer the algorithm packs along with each difference value.
In this case, it would be less expensive for the algorithm to simply pack the whole image, suggesting that a

simple optimization for the job compression algorithm would be for it to calculate, first, whether it would be

less expensive to send the whole image instead, and, if sending the whole image would be cheaper, to pass

"NumAssignmentElements" instead of "ElementCount" in the message to indicate that it contains a whole
image instead of a set of differences and their indices.

The most important aspect of the job compression issue, however, is not the algorithm itself but the

fact that by constructing messages intelligently, Distributed NEPP and other parallel programs can improve

their efficiencies and cut communications overhead. In this case, as this section mentioned earlier, using this

approach decreased the length of most assignment messages from 43,216 bytes to around 48.

3.3. OTHER ISSUES 17

3.3 Other Issues

3.3.1 Surviving a PVM Process Crash

One of the limitations of PVM version 2.4 is that if any machine in the cluster crashes, the whole application

will crash along with it. The PVM message passing and remote process control facilities that Distributed

NEPP uses rely on having one PVM daemon process running on each machine in the cluster. Under PVM
version 2.4, however, if any PVM daemon in the cluster crashes, the other daemons will observe that fact

and exit, in this case aborting Distributed NEPP as a consequence. PVM version 3.0, as [6] explains, detects

a crashed daemon and automatically deletes it from the cluster. Version 3.0 also allows new machines to join

the cluster dynamically, though Distributed NEPP does not yet have the capability of using a new machine
if one should become available.

It is important to note that, while Distributed NEPP cannot survive a PVM daemon crash under PVM

2.4, it can survive a crash of one of its processing node programs. Furthermore, once the program has been

modified to run under PVM 3.0, the Fault-Tolerant Distribution algorithm will handle daemon crashes just

as it handles node crashes, by rerouting the work to still-functional nodes.

3.3.2 Node Recovery

Currently, Distributed NEPP does not include any facilities for restarting node processes or reintegrating

processes that an external agent has somehow started into the application. However, there is no fundamental

reason why the application might not be able to reintegrate node processes. Please see section 6.1 for some

possible approaches to recovering nodes.

3.3.3 Advantages and Drawbacks of Centralized Control

As earlier sections mentioned, the host process is the vulnerable point in the Distributed NEPP system. If

the host fails, the entire application will fail along with it. Furthermore, the host is the system bottleneck: as

the number of node processes increases, the host's workload will increase as well, and eventually the host will
saturate. For a number of real-world, application-specific reasons, however, centralized control is a viable
alternative in this case.

First of all, Distributed NEPP is a single user application. Unlike the distributed systems many of the

references describe, each user will start her own copy of the host program and will have her own set of node

processes. If the host program dies, it will be just as though a uniprocessor application had died. The nodes

will detect the fact that there is no host process when they try to send it a message and get an error result

from PVM. When they discover the host is dead, they will automatically exit. The user need merely restart

the host, just as she would with a uniprocessor application.

The assumption that only one machine in the cluster has access to the input and output files also lends

itself to centralized control. If the only machine that can access the data files becomes faulty, there is no way

for the application to continue. By placing the host, the only non-fault-tolerant portion of the Distributed

NEPP application, on the only machine that can access the input and output files, the Distributed NEPP

design consolidates two potential faults into one: if the critical machine should fail, the fact that the host

will fail with it is not important since there is no way for the application as a whole to continue without
access to its files.

One advantage of centralized control is that it avoids the additional overhead many of the algorithms

in Chapter 2 need to gather information for load balancing. Since the host always knows which nodes

have which jobs, it has all the information it needs to balance the system load without having to pay the

communications overhead to gather information from throughout the system.

Another advantage of centralized control is that it is simple: converting Sequential NEPP to Distributed

NEPP required adding over 15,000 lines of C code to the program; using a distributed scheme might have

made the problem too large to solve with the time and resources available, and the benefits may not have
been worth the extra effort.

18 CHAPTER 3. ALGORITHMS

Still , it should be possible in future versions of the application to incorporate a distributed control scheme.
Section 6.1 lists some possible approaches to distributing the host's tasks throughout the processing cluster.

Chapter 4

Analytical Model

4.1 Analytical Model of the Algorithms Performance

Without an analytical model, it would be extremely difficult to analyze the performance of the Simple Distri-

bution, Multiple Distribution, and Fault-Tolerant Distribution algorithms in a heterogeneous environment.

Since there are several users on the testbed machines, and system loads can vary widely from one test run to

the next, traditional measures such as speedup show a large random variation. By developing a model that

will calculate expected performance in terms of system load, and correlating the results of this model with

observed performance, we can analyze the performance figures more accurately and meaningfully. Table 4.1

summarizes the notation this analytical model will use.

Consider a system containing p node processors. Let ci represent the relative speed of processor number

i's hardware. Now, in a multi-user system, the node processes may not have access to the full speed of the

hardware, depending on the system load, so let ai represent the fraction of the power of processor i that the
application can use; ai ranges from 0... 1. Note that, while cl is constant and depends on the processor's

hardware, ai depends on the current system load and, therefore, can change over time. To keep the model

simple, define ai to be the fraction of processor i's power that the application uses during the entire time

the application runs.
Now, we can combine ai and ci to create a measure of the relative throughput for processor i. Let si

represent the throughput, or speed, of processor i. Then, si will be:

8i : OtiCi (4.1)

Furthermore, define the average throughput of the nodes, su as the average value of si across all processing
nodes:

S_u = -_ _ Si (4.2)
" i=0

And finally, let stain be the throughput of the slowest processor in the system:

stain = min{si}, i = 0...p - 1 (4.3)

Similarly, a node must perform a certain amount of work (i.e. complete a certain number of standard

instructions) equal to fj on each job j to finish it. Note that this model assumes that a job is an atomic

unit of computation: only one node may work on a particular job at a time, though several nodes may each

work independently on their own copy of a given job. Also, each algorithm will introduce a certain amount

of communication and computational overhead per job. Represent the algorithm-introduced overhead with

aj. Note that with some algorithms, aj may be constant for all jobs, but for generality's sake, this model
allows the overhead to vary from job to job. Now, define the total work a node must perform on a job to
finish it as the sum of the work the job requires and the amount of overhead the job distribution algorithm

introduces:

wj = fj + aj (4.4)

19

20 CHAPTER 4. ANALYTICAL MODEL

Table 4.1: Notation for algorithm performance model.

p number of node processors in the system

q queue size of each node processor (assuming uniform queue sizes among the processors), measured in

jobs

J number of jobs the host must distribute

fj the amount of computation it will take to finish job j, measured in standard instructions per job

aj the communications and processing overhead the algorithm introduces for job j, measured in standard
instructions per job

wj the total amount of work job j requires, the sum of fj and aj, in standard instructions per job

w u the average value of wj, Vj, in standard instructions per job

Wh the overhead the host introduces per job result it receives, in standard instructions per job

ct the relative CPU and hardware speed of processor i, hardware dependent, measured in standard in-

structions per unit time

c_i fraction of the CPU time of processor i that the application receives during the complete run, unitless

st the relative throughput (speed) of processor i; the product of ci and ai, in standard instructions per
unit time

s_ average value of st, Vi, in standard instructions per unit time

s,nin minimum of st, Vi, in standard instructions per unit time

T_t,_p, T,_,u, T1_u wall clock times for the Simple Distribution, Multiple Distribution, and Fault-

Tolerant Distribution algorithms, respectively

tm_ tr_ tI time for Multiple Distribution, Replicating, and Last Job phases, respectively, of the Fault-

Tolerant Distribution algorithm

Wsimp, W,_,u, W]_,u total amount of computation (aggregate CPU time) the Simple Distribution, Mul-
tiple Distribution, and Fault-Tolerant Distribution algorithms perform, respectively, in standard in-
structions

z represents an arbitrary number of jobs

4.1. ANALYTICAL MODEL OF THE ALGORITHMS' PERFORMANCE 21

Furthermorel let w_ represent the amount of work a given job requires on average:

l_-i

= 7E: (4.5)
j=O

p-1
The total computational power in the nodes will be _,i=o si which is equal to psi. Furthermore. if, on

average, the amount of work a node must perform to finish a job is w_, then the host can expect

responses per time = ps_ (4.6)

job results from the nodes per unit time, or, equivalently, the mean time between responses from the nodes
will be

time per response ----_w_ (4.7)
ps_

Consider the Multiple Distribution algorithm first. As Chapter 3 describes the algorithm, the programmer

can configure both the number of jobs the host sends to a node with each assignment message and how small

the number of jobs in a node's queue can get before the host regards that node as idle. For the sake of

simplicity, however, this model assumes that the host regards a node as idle when the node empties its

queue, at which point the host refills the node's queue. This assumption should not prove especially limiting

since the model does not include specific terms for communications overhead, and it assumes that the host

may refill queues asynchronously. Therefore, if, for example, the host actually sends five jobs per assignment

message and regards the nodes as idle when their queues contain one job, the model will treat the system

as queue size 6 with adjustments to some constants to reflect the difference in communications overhead.

Under the Multiple Distribution algorithm, the host sends a total of J jobs to the nodes and does not

send replica jobs. Therefore, under normal circumstances, we would expect the application to finish in time

Jw_
t._,,_ ave -- (4.8)

ps_

However, there is also a lower bound on the time for this algorithm. At the beginning of the algorithm's

run, the host sends enough jobs to every node to fill the nodes' queues (assuming J > pq.) Therefore, the

minimum time for the algorithm's run is the time it takes the slowest node to finish all the jobs in its queue,

or, on average,

t,n_z_-,_i,- qwu (4.9)
Srnin

The total time for the Multiple Distribution algorithm will be the larger of t,_zt-_e and t,_m-,_i,; if the

nodes are evenly balanced, they will all finish simultaneously, but if one node is significantly slower, the

application will have to wait for it to finish with its assigned work:

{Jw, qw,} (4.10)T,nuu = max
pS t_ Stain

The total time for the Simple Distribution algorithm is a special case of that for the Multiple Distribution

algorithm. The Simple Distribution algorithm acts like a Multiple Distribution algorithm with queue size 1
and higher communication overheads, yielding the equation

{Jw_ w_ } (4.11)Tsimp = max • ,
PS tt Srnln

in which the value of w_ will be somewhat larger than that in equation 4.10 since aj, the amount of overhead

the algorithm introduces to each job, will be larger.
The analysis for the Fault-Tolerant Distribution algorithm is more complex. Recall that the algorithm

acts like the Multiple Distribution algorithm until it exhausts all the jobs in the input file. Then, as nodes

become idle, the host begins sending replicas of jobs whose results it has not yet received to the idle nodes.

22 CHAPTER 4. ANALYTICAL MODEL

Furthermore, jobs can become redundant: once the host has received one copy of the results for a given job,

all other copies of that job in the nodes' queues become redundant, and the host simply discards the results
when the nodes send them. Since the Fault-Tolerant Distribution algorithm as presented in Chapter 3 does

not include any provisions for dequeuing redundant jobs, as the run continues the nodes will waste increasing

amounts of their time processing now-redundant information. (For practical reasons, -the Distributed NEPP

code does not dequeue redundant jobs. However, Chapter 6 includes a discussion of the merits of this

refinement.)
Assume J >_ pq. The host tries to keep the nodes' queues full and sends out new jobs in preference to

replicas. Therefore, when the host sends the last job from the input file it will have received the results

of J - pq jobs from the nodes, since the nodes' queues still hold a total of pq jobs for them to process.
Furthermore, none of the J-pq job results the host receives will be redundant because, up to that point, the

host has not sent any replica jobs. So, for the first J-pq jobs, the Fault-Tolerant Distribution algorithm acts

like the Multiple Distribution algorithm. Call this time period the Multiple Distribution phase. Substituting

into equation 4.8 yields the time the Fault-Tolerant Distribution algorithm spends in this phase:

tm - (J - pq)w (4.12)
ps_

During the next phase of the algorithm, the Replicating phase, the host begins replicating jobs and

sending the replicas to the nodes. Also during this phase, the host begins receiving and discarding redundant

job results. Let x be the number of original, non-redundant job results that the host needs to finish the

application. Since the host keeps the nodes' job queues full by sending them replica jobs, the fraction of
non-redundant results still in the nodes' queues will be x/pq. The rest of the jobs in the queues are or

will become redundant information. (Note that if there are several copies of a particular job in the nodes'

queues, and the host has not yet received the results for that particular job, we have no way of knowing
which of the copies is redundant and which is non-redundant; we can, however, state that one of the copies
will be non-redundant and the rest will hold redundant information when the host receives them.) Here

the model makes another simplifying assumption: that the redundant and non-redundant jobs have uniform

distribution in the nodes' queues. In other words, the model assumes that if there are x/pq non-redundant

jobs in the queues, then the next job result the host receives will be non-redundant with probability x/pq

(i.e. P_r(x) = x/pq). Furthermore, each non-redundant result the host receives decreases the number of

results it needs by one. Finally, equation 4.6 gives the expected number of responses, both redundant and

non-redundant, the nodes will send to the host per unit time. We can combine this information into an

equation that says that the rate of change of the number of non-redundant jobs in the queues will equal the
number of non-redundant jobs the nodes send to the host at each time instant, or:

d-7=- ,,w,,;

Solving equation 4.13 gives

where K is the constant of integration. At time 0, all the jobs in the nodes' queues are non-redundant, so x
should be pq, implying that K = lnpq. Plugging in the value for K, and solving for t, yields the following

equation:

t= (lnpq-ln) (4.15)
\ s_, /

Equation 4.15 holds only until x = q. If there are pq jobs in the nodes' queues, x of which are non-
redundant, then the number of copies of each non-redundant job will be pq/x. (Note that, for simplicity's

sake, this term neglects that fact that some of the jobs in the queues will not be copies of jobs for which the
host still needs results. In other words, in reality the actual number of copies of each of the x jobs the host

still needs will be slightly less than pq/x.) Now, if x < q, the number of copies of each job the host needs

will be pq/x > p, indicating that the host has put more than p copies of at least one of the jobs it needs into

4.1. ANALYTICAL MODEL OF THE ALGORITHMS' PERFORMANCE 23

the nodes' queues. However, with the Fault-Tolerant Distribution algorithm, the host will never send two

copies of the same job to the same node; if sending a node multiple copies of the same job is the host's only

option, the host will leave the node's queue partially empty, instead. Therefore, once x - q, the host cannot
send out any more copies of any of the jobs it needs, so the Replicating phase ends making the total time

for the Fault-Tolerant Distribution algorithm's Replicating phase

During the final, Last Job phase of the algorithm, the host cannot replicate any jobs without violating

the "one copy of a job to a node" rule, because there are so few original results it needs. At the beginning

of this phase, the total number of jobs, redundant and non-redundant, in the nodes' queues will be pq. The

host can expect ps_,/w_ job responses per unit time, from equation 4.6, so the total number of jobs in the

queues at any given time during this phase will be:

iobsinqueues= (ps] (4.17)
\ wt, /

leading to a new version of equation 4.13 which describes how the number of non-redundant jobs will change

during this time period:

dt - pq -P-_-t (4.18)
w_, I \wit]

Solving equatio n 4.18 yields
x = K(qw. - s.t) (4.19)

Where K is the constant of integration. Since the Last Job phase of the Fault-Tolerant Distribution algorithm

begins when x = q at t = 0, we can calculate K = 1/w_,. Plugging in the value for K and solving for t gives

equation 4.20, below:

= Wg(q _ x) (4.20)
8#

Finally, the Last Job phase ends when there are no non-redundant jobs left in the queues, i.e. when x = 0.

When z = 0, equation 4.20 provides an expression for the time the Fault-Tolerant Distribution algorithm

takes to complete its Last Job phase:
qw, (4.21)tl = --

S#

If we combine equations 4.12, 4.16, and 4.21, we have an expression for T1auu, the total time for the

Fault-Tolerant Distribution algorithm to run:

Tlauu_ (J-pq)w_ +(qwg](l+lnp)=Jw.-.._ +(qwg_lnp (4.22)
st, p \ st, / ps_ \ s_ /

Another statistic of interest is the total amount of computation all three algorithms must perform. Since

the Simple Distribution and Multiple Distribution algorithms do not have the nodes perform any redundant

work, calculating their total computation is straightforward. The total work the application requires is

J-1

 (wj + wh)= + (4.23)
j=O

where wj includes both the work each job of the application requires and the overhead the algorithm in-
troduces, and wh is the amount of overhead the host introduces per job result it receives from the nodes.

Since the Simple Distribution and Multiple Distribution algorithms do no redundant computation, their

total computation, W,_mp and Wmult, respectively, will be

Wsimp = Wm,m = J(w_ + wa) (4.24)

24 CHAPTER 4. ANALYTICAL MODEL

Where the values of w_ and wh will be different for each of the two algorithms due to different overhead.
The Fault-Tolerant Distribution Mgorithm will require more total computation because the nodes spend

a portion of their time calculating redundant results. We can find the work the nodes perform by multiplying

the work per job by the jobs per unit time by the total algorithm run time:

\w_/

Furthermore, the host will require some CPU time. The host's total contribution to the application's

computational load will be the work it requires per job result multiplied by the number of job results it

receives, or

WyauU-ho,_ = (Wh) (ps, _ (Tya,_u) (4.26)
kWh, /

The total workload the application requires under the Fault-Tolerant Distribution algorithm will be

w1o z = + Wjo -ho, (4.27)

which, after substituting and simplifying, yields the equation

WyauU = (w, + Wh)[J + pq(lnp)] (4.28)

where (w_, + wh)pqlnp is the additional amount of computational overhead the Fault-Tolerant Distribu-

tion algorithm introduces through having the nodes compute redundant information. Note that here, too,

the values of wg and Wh will be different from those of the Simple Distribution or Multiple Distribution

algorithms.

4.2 Corrected Efficiency

Measuring execution time, speedup, and efficiency in a heterogeneous, multi-user environment with dynam-

ically changing loads presents some difficulties. Execution time and speedup are both important figures for
the end user, so it makes sense to measure them in the environment where the end user will be working and

to present an average figure over several trials so that the user knows what sort of performance to expect

from the application. Efficiency, on the other hand, is a figure of more importance to the application's

designer: it represents how well the designer has done at minimizing overhead while creating a parallel appli-

cation. Therefore, it may be worth considering a measure of efficiency that is independent of the operating
environment.

When engineers measure the efficiency of an electric motor, they calculate the amount of power at the

output of the motor divided by the power they must supply at the input, and they make similar measurements

of other mechanical systems. An intuitively appealing measure of a parallel program's efficiency, then, would

be the amount of work it accomplishes divided by the amount of work the multiprocessor must supply to the

application, or, more specifically, the number of standard CPU cycles of useful work the application finishes

divided by the number of cycles it consumes.

Consider an application similar to Distributed NEPP. Suppose the application must perform J jobs, each

requiring work fj. Furthermore, suppose the parallel version of the application generates an overhead equal

to A(J). (This analysis uses the symbol "A" for the overhead function because it is similar in concept to the

overhead term, "a/', that section 4.1 introduced. Table 4.2 summarizes the additional notation this section

uses.) The total amount of work the program must perform to finish all J jobs will be:

J--1

= fj (429)
j=0

And the work that the parallel program will perform will be:

J-1

Wpa_ - A(J) + __, fj (4.30)
j=0

4.2. CORRECTED EFFICIENCY 25

A(J)

Wreq

WpaT

Ts_q

Tpar

S

E

E¢

0_8

C8

Table 4.2: Additional notation section 4.2 introduces.

additional overhead the parallel application introduces, in standard instructions

amount of work the application must do, exclusive of additional parallel overhead, in standard
instructions

total number of standard instructions the parallel application executes, including overhead

time for sequential version of application to finish execution

time for parallel version of application to finish execution

speedup: Tseq/Tpar, unitless

normal measure of efficiency: S/p, unitless

corrected efficiency: Wreq/Wpar, unitless

time slice the sequential program gets on the test processor, unitless

relative speed of the sequential processor, in standard instructions per unit time

We can then define the corrected efficiency, the efficiency of the application that takes into account the

relative speeds of the various CPUs in the multiprocessor and how much time the application gets on each

one, as:

Ec = Wreq _ _'JJ_'-_ fJ (4.31)
J-1wpor A(J) +

In practical use, the engineer could measure Wreq and Wpa_ in terms of CPU seconds that the sequential
and parallel versions of the program required, for the given number of nodes, and corrected for the relative

speeds of the sequential and parallel CPUs.

Now, for comparison, consider the more standard definition of efficiency. For the sake of generality, this

analysis will allow the application to run in a heterogeneous, multi-user environment. In particular, let ci

be the relative speed of each of the i processors the application uses, and let cq be the fraction of time the

application has access to the CPU on processor i, where we assume that, since there are multiple users, the

various users are sharing the different processors to one degree or another. We also define a8 and cs to be
the time fraction and relative speed, respectively, of the processor on which the sequential version of the

program runs. The sequential program should finish running in time:

T,oq- (4.32)
O_sCs

where we assume that any overhead the sequential program introduces is incorporated into fj, as most

measurements of speedup and efficiency do.

The parallel version of the program will finish in an amount of time equal to total work plus overhead

divided by total processing power available, where the overhead might vary depending on the arrangement

of jobs on the different processors:
J-1

A(J) + Ej=o fJ (4.33)
Tpar = p-1

Ei=O ¢_iCi

Speedup is equal to T, eq/Tpar, and the usual definition of efficiency is speedup divided by the number of

26 CHAPTER 4. ANALYTICAL MODEL

processors:

or, rewriting for clarity,

s
E -- -- = a,Co (4.34)

A'J" _',z-*
P ()+2.ji=o 1_

v E,2-:-,o,

,_1)/ _z-,i=0 , , (4.35)
\ / I,A(J)+ E;=o St

Now, consider the special case of a homogeneous, single user multiprocessor. If the machine has only

one user, or, more accurately, only one application running on any given node at a time, then that parallel

program will not have to share the processor's nodes, so a_ = 1 for all i. Furthermore, since the machine is

homogeneous, all processors will have the same speed, so ci = 1 for all i. Finally, suppose the user follows

the usual practice of testing the sequential version of the code on one processor of the parallel machine to

get an accurate time for speedup calculations. Then, as - c, = 1 as well, and equation 4.35 simplifies to:

E = _jz___ f1 (4.36)

which is exactly the same as equation 4.31. So, in the limiting case of a homogeneous, single-user multi-

processor, the corrected efficiency and the conventional definition of efficiency are identical. One concern at

this point might be the fact that conventional efficiency on a single-user multiprocessor includes the time

during the application run when the processors are idle, such as during the sequential portion of the parallel

code, and no explicit term for this idle time appears in equation 4.36. However, no other application can use

the processors during their idle periods, since only 1 application can use the node at a time in a single-user

machine, so we can incorporate the idle times into A(J).
The two measures of efficiency are not the same in a more dynamic environment, however. Suppose a

programmer is testing a new application on a homogeneous, multi-, as opposed to single-, user machine. She
measures the sequential program on one node and gets a time. Then, when she runs the parallel version

of the code, another programmer tests a different application at the same time, so both programmers get

1/2 the cycles of each processing unit. The corrected efficiency, E¢, will not change: each parallel program

does the same amount of work, regardless of how long it takes. (And, since all processors run at the same

speed, the programmer could calculate corrected efficiency using the number of CPU seconds the sequential

and parallel versions of her program consumed.) However, the normal measure of efficiency will change
dramatically. Since the programmer measured the sequential version of her code on a single processor and

got the whole processor to herself, c_, -- 1. However, she is sharing the parallel processors, so ai = 0.5 for all

i. Finally, since this hypothetical machine is a homogeneous multiprocessor, ci = 1, and c, = 1 because she

tested the sequential program on one of the processing nodes. The normal method of measuring efficiency,

dividing the speedup by the number of processors, will yield, by substitution into equation 4.35:

0.5

E- (-_) (A(j)+ __,j fj) (4.37)

or 1/2 of what the programmer would have measured had she had sole use of the machine during testing.
Furthermore, her efficiency measurements will vary with whatever the current load happens to be on the

machine at the time, making it extremely difficult to tell how much overhead the parallel version of the code
has introduced.

The normal measure of efficiency also varies in a heterogeneous multiprocessor. Suppose the engineer

above was testing her code on a machine with mixed processors, so that half the processors had relative

speed 1.0 (c_ = 1.0 for i = 0...p/2- 1), and the others ran half as fast (ci = 0.5 for i -- p/2...p- 1.) Again,
the corrected efficiency will not change. However, the normal measure of efficiency will yield

[v,Pl_-I _ a p-i]

(_c_) ' z'i-O "'v +)-]_i=p'2 0"5 J (4.38)E= [P(A(J) + E+ I_)

4.3. EXAMINATIONOFTHE ANALYTICAL MODEL'S IMPLICATIONS 27

assuming the user gets the whole machine in both cases (ai = as = 1.0). If we further assume that our
hypothetical engineer tests the sequential code on one of the faster processors (cs = 1.0), then equation 4.38

simplifies to

E = -_ A(__,.7 fi (4.39)

or 3/4 what she would have measured on a homogeneous machine. Had she measured the sequential code
on one of the slow processors, she would have found an overall efficiency of 150% that of the homogeneous

case.

In both these cases, measuring the efficiency by dividing speedup by the number of processors results in

a figure that includes the current system load and is sensitive to variations in hardware. While this measure
of efficiency would be useful for someone who wants to know how much speedup to expect by adding new

processors under average load conditions, it is less useful for determining A(J), the amount of overhead

a parallel program requires, in a homogeneous, multiuser environment. Therefore, later chapters present
results both in terms of the usual measure of efficiency, speedup divided by number of processors, and in

terms of corrected efficiency.

It is worth noting that, according to the model in section 4.1, Distributed NEPP's 'corrected efficiency
should be the work the sequential program requires divided by Wfa_u. Dividing equation 4.29 by equa-

tion 4.28 yields

Ec = _-"_ fj (4.40)
(w_, "t- Wh)[J + pqlnp]

which we can rewrite as

E¢ = _']_.1fJ (4.41)
_,j fj + _,j aj + Jwh + _ [Jwh + E.l(aj + fj)]

to see that, for Distributed NEPP using the Fault-Tolerant Distribution algorithm, the overhead term from

equation 4.31 is equal to

A(J)-'- Zaj + Jwh + _ Jwh + Z(aj + fj) (4.42)
J J

Furthermore, the Distributed NEPP program itself automatically collects and returns data on CPU usage

from the host and all nodes, to provide real-world numbers to compare against the model.

4.3 Examination of the Analytical Model's Implications

The analytical model that section 4.1 develops implies a number of interesting things about the Simple

Distribution, Multiple Distribution, and Fault-Tolerant Distribution algorithms. Perhaps the most interest-

ing is that a heterogeneous environment can favor higher-overhead algorithms, such as the Fault-Tolerant
Distribution or Simple Distribution algorithms, over those like the Multiple Distribution algorithm which

have lower overhead requirements but a potentially higher minimum execution time.
Consider a cluster that contains 19 processors that run at relative speed 1.0 and 1 processor that runs

much more slowly, at relative speed 0.2. Such a situation is actually fairly common: in one of the clusters

that provides a testbed for Distributed NEPP, the relative speeds of the node processors range from 1.0 to

0.36 before including the effects of having to share the processors among multiple users. Furthermore, let

the average computation per job, w_, be 1.0 for all three algorithms. Assume the Multiple Distribution and

Fault-Tolerant Distribution algorithms use a queue size of 6, and that there are 100 jobs in the input file.

Figure 4.1 shows the execution time the model predicts for each possible number of nodes, assuming that

the slow processor is always one of the nodes. Note that the time for the Multiple Distribution algorithm,

the dashed line, reaches a minimum at 4 processors. At this point, the fast processors are waiting for the
slow one to finish the jobs the host has assigned it. The dotted line shows the performance of the Simple

Distribution algorithm: since the minimum time for the Simple Distribution algorithm is so much lower,

28 CHAPTER 4. ANALYTICAL MODEL

300

Execution Time, Slow Processor 0.2
I I 1 I I I I I

o_

250

200 -

150 -

100 -

5O

0
0

Simple

Multiple

Fault-Tolerant

...

I I I I I I I I I

2 4 6 8 10 12 14 16 18 20

processors

Figure 4.1: Predicted execution time, one slow processor at relative speed 0.2.

its performance continues to improve as the number of processors increases. Finally, the Fault-Tolerant

Distribution algorithm, with the solid line, tracks the Simple Distribution algorithm, but its extra overhead

keeps its performance lagging behind that of its simpler counterpart.

Figure 4.2 shows a somewhat more extreme case. Here, the speed of the slowest node has dropped to 0.03;

all other factors remain the same. The Multiple Distribution algorithm, with it's 6-element queUe, reaches its
minimum execution time almost immediately. Even the Simple Distribution algorithm hits a plateau fairly

quickly, so that, beyond 6 processors, only the less efficient Fault-Tolerant Distribution algorithm continues

to show improving execution times.

It is important to note that these execution time plots can be somewhat deceptive in that they assume

the same overhead per job for all three algorithms. As section 4.1 explains, these overheads should vary.

In particular, the Simple Distribution algorithm should suffer from a higher overhead per job because of

its greater communication requirements: it sends only one job with each assignment message rather than

more efficiently packing several jobs into an assignment, as the Multiple Distribution and Fault-Tolerant

Distribution algorithms do.

Speedup and efficiency follow the same trends as the execution times. Figure 4.3 shows the speedup values

that correspond to the times in figure 4.2, measured against the same application running sequentially on a

single, fast node. Here, again, the dotted line shows the performance of the Simple Distribution algorithm,

the dashed line shows the Multiple Distribution one, and the solid line shows the Fault-Tolerant Distribution

algorithm. Both the Simple Distribution and Multiple Distribution algorithms quickly reach peak speedup

4.3. EXAMINATION OF THE ANALYTICAL MODEL'S IMPLICATIONS 29

300
Execution Time, Slow Processor 0.03

I I t i L i i i

250

2OO

150

100

5O

................ £ ..

....-.---.-._.d. t

0 2 4

Simple

Multiple
Fault-Tolerant

6 8 10 12 14 16 18

processors

Figure 4.2: Predicted execution time, one slow processor at relative speed 0.03.

2O

30 CHAPTER 4. ANALYTICAL MODEL

4.5
Speedup, Slow Processor 0.03

i i i i i i i i i

0

cD

o_

3.5

2.5

2

1.5

0.5

0
0

/ Simple

// Multiple
_ Fault-Tolerant

2 4 6 8 10 12 14 16 18 20

processors

Figure 4.3: Predicted speedup, one slow processor running at relativespeed 0.03.

and then level off as the slow node dominates computation time. The Fault-Tolerant Distribution algorithm,
because it is less efficient and requires the nodes to compute redundant information, does not increase in
speed with the number of processors as quickly as the Simple Distribution algorithm does, but it achieves
a higher ultimate speedup factor because it does not face the same minimum execution time barrier that
the other two do. The odd value for speedup with one processor is due to the fact that, for simplicity, this
example assumes the slow node is always one of the processors in the group; with only one processor, the
slow node will run the whole application, resulting in excessive execution times. Figures 4.1 and 4.2 do not
show the high execution time for the 1 node case because they have been scaled to show details at two or
more nodes.

Figure 4.4 shows the efficiency curves corresponding to figures 4.2 and 4.3, where efficiency equals speedup
divided by the number of processors. The plateau in the execution times of the Simple Distribution and
Multiple Distribution algorithms comes across very clearly in their efficiency curves, so that, when there is
one very slow node and the rest of the nodes are operating at full speed, the Fault-Tolerant Distribution
algorithm is ultimately more efficient than the other two. Again, the extremely low efficiency value in the 1
processor case is due to this example's assumption that if the application uses only one processor, it will be
the slow one.

Finally, figure 4.5 shows the corrected efficiency curves for this same case. Since these curves are indepen-
dent of execution time, measuring, instead, the impact each algorithm has on the system as a whole, they do

not show the same glitch at 1 processor that figures 4.3 and 4.4 do. The Simple Distribution and Multiple

4.3. EXAMINATION OF THE ANALYTICAL MODEL'S IMPLICATIONS 31

100
Efficiency, Slow Processor 0.03

I I I t I I I

t9

90

8O

70

60

5O

40

30

20

10

0
0

..'"..

.." ".

." "..

t_

iI

I

Simple

Multiple
Fault-Tolerant

f I I l I I I I

4 6 8 10 12 14 16 18 20

processors

Figure 4.4: Predicted efficiency, one slow node running at speed 0.03.

32 CHAPTER 4. ANALYTICAL MODEL

120
Corrected Efficiency, Slow Processor 0.03

I i i i i

o

0
o

100

80

60

40

2O

" ----- Multiple

I I I I I I 1 I I

0 2 4 6 8 10 12 14 16 18 2O

processors

Figure 4.5: Predicted corrected efficiency, one slow node running at speed 0.03.

4.3. EXAMINATION OF THE ANALYTICAL MODEL'S IMPLICATIONS 33

Distribution corrected efficiency curves, with the dashed line, will not change since, regardless of the number

of processing nodes, both algorithms will do the same amount of work. Please note that the dotted line of

the Simple Distribution algorithm is hidden behind the dashed Multiple Distribution algorithm's line in this

graph.
As the number of processors increases, the Fault-Tolerant Distribution algorithm does more redundant

work, so its corrected efficiency curve drops: with increasing processors, it consumes more CPU cycles on

the processing nodes per unit work it accomplishes. This is the behavior equation 4.40 predicts. One final

caveat about this figure is that, for clarity, the curves assume that the host introduces no overhead per job

(i.e. Wh = 0); including an overhead factor for the host would change the values in the plots, but their overall

shapes would remain the same.

Chapter 5

Results and Analysis

5.1 PVM 2.4 Times

Timing runs of a simple program using PVM version 2.4 to communicate between two IBM RS/6000 Model

550 computers indicate that PVM has a high set-up cost and low cost per byte, just as earlier chapters

mentioned. For two processes on the same machine, the average message set-up time was 3.2 milliseconds.

The set-up time rose to 3.9 milliseconds for two processes located on different workstations connected by

an Ethernet network. The cost per byte was 0.22 microseconds to send a message to a process on the same

machine, or 0.50 microseconds per byte to send to a process on a different machine. Therefore, on the

RS/6000 model 550, it should take 3.2 × 10-3÷b(2.2 x 10 -7) seconds to send a message of b bytes to another

process on the same machine, or 3.9 × 10 -3 ÷ b(5.0 x 10 -7) seconds to send the message to a process on a

different machine. Note that the analytical model in Chapter 4 incorporates these times into the constants

aj, Wh, ai, and ah. aj includes the number of standard instructions the node uses to communicate with the

host (or the ones it spends idling while waiting to acquire a communications channel, if no other process can
access the CPU during that time) along with all other overhead per job the algorithm introduces, and Wh

functions similarly for the host. If another process can use the CPU during most of the message set-up time,

then the set-up time instead affects a_ and _h, the fraction of the application's execution time the host and

node spend running on the CPU.

5.2 Distributed NEPP's Performance

The first test of Distributed NEPP determined its relative performance under the Simple Distribution,

Multiple Distribution, and Fault-Tolerant Distribution algorithms. For this test, Distributed NEPP ran on

a cluster of 32 IBM RS/6000 model 560 computers connected by an Ethernet network. Several users shared

the cluster, so system loads tended to vary significantly over time; accordingly, these results show the mean

values over multiple timing runs (10 runs for the Fault-Tolerant Distribution algorithm, 5 each for Multiple

Distribution and Simple Distribution.) These trials used a fairly complex input file: the sequential version
of NEPP required approximately 2171 seconds (36 minutes) wall clock time to process this particular file on

an unloaded processor.

Figure 5.1 shows the speedup each algorithm accomplished relative to the fastest sequential time, and

figure 5.2 depicts the corresponding efficiency curves, with efficiency measured in the conventional, E = S/p,

way. In both graphs, dots show individual trials, and lines represent the mean value across the trials for
each algorithm: the dotted line shows the Simple Distribution algorithm, the dashed line shows the results

for the Multiple Distribution algorithm with queue size 6, and the solid line shows the mean speedup and

efficiency for the Fault-Tolerant Distribution algorithm, also with queue size 6. Although this cluster has 32

processors available, due to practical considerations such the amount of time each run required, the necessity

of sharing the cluster with other users, and the fact that regulations governing the machines' use typically

restrict eight machines to interactive use only, the timing runs stopped at 24 rather than 32 nodes.

34

•oua!_i_!_uanbos_so_j o_oAt._loadnpoodsu_oIAI:I'_ *an_!_I

S_lOSSOOo.ld

g_ O_ gI OI g 0
0

• I

• l .

z ..", "

• " I

: I " ." z

_J | ..

' .: .. ; ltreaoio±-:lln_d

........- oldplniA I

'.............. i............."........ : oidm!s

I I t I

stu_.uo_Iy [IY - dnpoods

9

8

izI

9I

8I

_ID N Vl, g,_I Od?:I_t d S, d d_tN CI_t,L_O_tPd, LSI CI "g'_2

•d/s = 3 t_ouoI_Wo I'eUOI.$u_Auo_u'eoIAI:g'_ o;tn_t.,.tI

g_ O_
i

saossoooad

gI OI g
i i i

0
0

:ltreaoIO,L-1Ined

oId.nInlAI

oldtu!s

! ":...... z , .

• " ; "'":--. : : i : : : ' ": " !

• - • • • " * X /.x : •

, . i :%x - l" ,, . .
• ".. • . " % . x ,

• \, .
.. . • x ,,

'.. : • . .',"

• ..

i
l

I
: *

I I I I '

sttrql.uo_IV IIV - gouo!o_j_/

O_

017

Og _..

09 '_

OL

08

06

OOI

SISA"IVNV _NV S, uI.rIS_tlt "9 U_I, LdVHD g_

5.2. DISTRIBUTED NEPP'S PERFORMANCE 37

Perhaps the most interesting aspect of figure 5.1 is the unexpected result that both the Simple Distribution
and the Fault-Tolerant Distribution algorithms outperformed the Multiple Distribution algorithm. Recall

that the discussion in chapter 3 suggested that the Multiple Distribution algorithm should be more efficient

than the Simple Distribution algorithm since it sends fewer messages. However, section 4.3 showed that in

a heterogeneous system, if the individual processor speeds differ enough, the Simple Distribution algorithm

should be faster than its Multiple Distribution counterpart. That situation may be occurring here: since

several users shared the cluster during these timing runs, resulting in very heavy loads on some of the

processing nodes, the processors in the experiment could have acted like the unbalanced system figure 4.1

depicts, even though all the node hardware was identical.

The performance of the Fault-Tolerant Distribution algorithm bears out this possibility: while it does

not finish as quickly as the Simple Distribution algorithm because the nodes spend part of their time

processing redundant information, it outperforms the Multiple Distribution algorithm. Both the Fault-
Tolerant Distribution and the Multiple Distribution algorithms had the same queue size, and the model in

Chapter 4 predicts that the Fault-Tolerant Distribution algorithm should behave similarly to the Multiple

Distribution algorithm, but that it lacks the Multiple Distribution algorithm's minimum completion time

constraint. Therefore, it appears that the minimum time constraint is coming into play: one or two slow

nodes is seriously degrading the Multiple Distribution algorithm's performance.

Figure 5.2's efficiency curves track the speedup curves, as expected (recall that this figure shows conven-

tional efficiency, E = S/p, which varies directly with S, the speedup.) Clearly, all three algorithms become
less efficient as the number of processors increases. However, from the distribution of the dots, which rep-

resent individual trials, there appears to be a large random variation in the conventional measurement of

efficiency for this multiuser system, as section 4.2 suggests there should be.

Note that none of the algorithms' speedup curves approaches a 1:1 slope (i.e. none of the algorithms

approaches 100% conventional efficiency.) One reason for this lack of performance is the overhead Distributed

NEPP introduces when running the NEPP code in parallel. A greater contributor to the problem, however,
is the fact that there were several other users on the cluster during the timing runs, so Distributed NEPP

rarely had access to the full computational power of the nodes. The sequential program, on the other hand,

ran on an unloaded processor, so the curves in these figures would show a realistic picture of what engineers

can expect when moving from their own, exclusive machines to a communally-shared cluster of processors.

Figure 5.3 shows the corrected efficiency for the three algorithms where, again, the solid line shows the
Fault-Tolerant Distribution algorithm, the dashed line shows Multiple Distribution, and the dotted line

shows Simple Distribution. Dots represent individual trials, as in figures 5.1 and 5.2. Recall that chapter 4
defines corrected efficiency as the amount of work the sequential program must perform to finish the task

divided by the amount of computation the parallel version consumes. In this case, the sequential program

requires an average of about 2155 CPU seconds on an IBM RS/6000 Model 560 to finish this particular

input file; the CPU time actually varies somewhat from one run to the next, probably due to page swaps,

network acquisition time, and other system overhead. The total CPU time for the parallel program is the
sum of the CPU times for the host and all nodes. Dividing the sequential CPU time by the total parallel

CPU time yields the corrected efficiency.

Figure 5.3 shows much less random variation than the conventional efficiency in figure 5.2, since corrected

efficiency is less sensitive to varying load conditions. As the number of processors grows, both the Simple

Distribution and Multiple Distribution algorithms' corrected efficiencies drop slightly from the additional

overhead involved in coordinating the efforts of larger numbers of nodes. However, even at 24 nodes, these

algorithms still have corrected efficiencies of about 85%, showing that for large numbers of processors, the

Multiple Distribution and Simple Distribution algorithms consume about 1/0.85 - 117% as much CPU

time as the sequential version of the program with this input file. Also, figure 5.3 clearly shows the extra
overhead the Fault-Tolerant Distribution algorithm introduces through processing redundant information.

Its corrected efficiency starts at 100% at one node and drops to just over 60% at 24 nodes, at which point
it consumes about 167% as much CPU time as its sequential counterpart given this particular input file.

Figures 5.4 through 5.6 provide a more detailed view of the random variation inherent in a multiuser
system. These plots show the measured speedup for all three algorithms, with the solid line depicting the

mean speedup and the dotted lines showing minimum and maximum measured values. Again, there were

38 CHAPTER 5. RESULTS AND ANALYSIS

100
Corrected Efficiency - All Algorithms

o

@
°1,._

@

o

@

90

80

70

60

50

40

30

2O

10

0
0

. i :] i i

A :............ ;• _ ,., . -_.... _ •

-_ x," ._ _ _ _'_ • ""*

i'".. :'"... :.."" * i * " •

?!,

Simple

Multiple
Fault-Tolerant

I I I 1

5 10 15 20 25

processors

Figure 5.3: Mean corrected efficiency, E = Wreq/Wpar.

5.3. ANALYSIS OF MODEL'S PERFORMANCE 39

18
Simple Distribution Speedup

I t t t

16

14

12

10

8

6

4

2

0
0 5 10 15 20 25

processors

Figure 5.4: Simple Distribution algorithm speedup.

10 Fault-Tolerant Distribution trials and 5 trials each of the Multiple Distribution and Simple Distribution

algorithms.
The features to note on these graphs are the spikes in the minimum speedup at 3 and 16 processors in

figure 5.4 and in the maximum speedup at 6 processors in figure 5.5. Figure 5.6 shows similar spikes. At

these points, abnormally high or low system load, or just an unusual load configuration, severely affected the

measured speedup value. These random variations underscore the difficulty of taking reliable measurements

in dynamic, multiuser systems and of applying those measured results to predicting the performance of any

given program run.

5.3 Analysis of Model's Performance

The second set of Distributed NEPP experiments attempted to determine how accurately the analytical

model in Chapter 4 agrees with observed data. The graphs in this section present their results in terms of

percent relative error, where

predicted- observed
percent relative error= observed × 100% (5.1)

so that a relative error of +100% means that the model predicted a value twice as high as the observed value;

similarly, a relative error of-100% means that the model underpredicted the observed value by a factor of

40 CHAPTER 5. RESULTS AND ANALYSIS

12
Multiple Distribution Speedup

ca,

10

8

6

4

2

0
0

...,,,."'

......... Min/Max
j'

Mean

I I I I

5 10 15 20

processors

Figure 5.5: Multiple Distribution algorithm speedup.

25

5.3. ANALYSIS OF MODEL'S PERFORMANCE 41

16
Fault Tolerant Speedup

I I L 1

"O
©

14

12

lO

8

6

4

2

0
0

.'"

......... Min/Max ,
•..."

Mean .,.

•..-"

I I I I

5 10 15 20

processors

Figure 5.6: Fault-Tolerant Distribution algorithm speedup.

25

42 CHAPTER 5. RESULTS AND ANALYSIS

Table 5.1: Measured relative hardware speeds of different processor models.

model CPUtime rel. speed
560 199.87 1.00

550 248.75 0.80

350 262.63 0.76

320 542.42 0.36

tWO.

The tests took place on a cluster of 12 IBM RS/6000's, including four model 550's, three model 560's,

one model 350, and four model 320's. To determine the relative hardware speeds of the different types

of machines, the researcher measured the aggregate CPU time each processor required to run the Fault-
Tolerant Distribution version of Distributed NEPP with one node. Note that this trial used the parallel

version of NEPP rather than the sequential version so the measure of relative hardware speed would include

any variations in communication speed. Table 5.1 summarizes the relative hardware speeds of the different
machines. This table normalizes the speed of the model 560 to 1.0, allowing the researcher to cross-check
results with the machines in the cluster of model 560's section 5.2 discusses.

The next challenge was to measure wi, the amount of work per job that the sequential and parallel

versions of NEPP required. Since there is no clean way to determine how many standard instructions a

program executes throughout its run, this measurement also used CPU time. In this case, the CPU time

a given node consumed, multiplied by the node's relative speed from table 5.1, provides a measurement

of the amount of computation the node used in "standard CPU seconds", the number of CPU seconds

the computation would have required on an RS/6000 model 560. Note that converting from "standard
CPU seconds" to "standardized instructions" requires simply multiplying the number of CPU seconds by

a constant, the number of standard instructions the processor can execute in one second. Furthermore, a

careful examination of the equations in chapter 4 reveals that if we measure relative speed (ci) in terms of

standard CPU time, and measure workload (wj) the same way, then the total execution time equations return
results in seconds, and the total work equations return results in terms of standard CPU time. Therefore,

this analysis uses the relative speeds in table 5.1 as the values for ci and uses CPU time to determine the

values of wj.

Finding fj, the amount of overhead per job for the sequential program, is straightforward. In this case,
running the sequential program on a model 560 showed that the program took 195.18 CPU seconds to finish

an input file containing 300 jobs. Therefore fj, or, more accurately, f_, the average value of fj, is equal to

195.18/300 = 0.6506 standard CPU seconds per job.

Measuring a,, the average amount of overhead each algorithm introduces per job, is more challenging.

Recall from section 5.1 that message set-up time and time per byte differ significantly between communicating

with a process on the same machine and communicating with one on a different machine. Furthermore,

communication time represents a significant portion of the overhead each algorithm introduces. To arrive

at an approximate number for the amount of overhead each algorithm introduces, the researcher measured

the aggregate CPU time, in terms of standard CPU time, that Distributed NEPP required to run with 2

nodes under each algorithm. Dividing by the number of jobs yields an approximate value for work per job,

and subtracting the value of f_ above gives a value for a_,. While this technique should be fairly accurate
for the Simple Distribution and Multiple Distribution algorithms, it cannot help but include the time for a

few redundant job results under the Fault-Tolerant Distribution algorithm. The researcher expected that

the large number of jobs, along with the fact that with only two processors the Fault-Tolerant Distribution

algorithm tends to generate few redundant jobs, would tend to swamp the measurement error.

The final constants the model needs are ah and _, the fraction of time Distributed NEPP has access

to the CPU of the host and each node processor during its run. Distributed NEPP gathers and returns the

amount of CPU time it consumes on each node processor, in terms of the node processor's own CPU time

rather than standard CPU time. Dividing each node's CPU time by the total application run time provides

5.3. ANALYSIS OF MODEL'S PERFORMANCE 43

100
Error, Pred. vs. Obs. Execution Time

8O

60

40

20

0

-20

-40

-60

-80,

-100
0

Queue Size 1

Queue Size 6

Queue Size 20

..................... _...... _._.-._.:..

• --....-- . --.: : !......................... ;

1 I I t I I

2 4 6 8 10 12

processors

Figure 5.7: Relative error in Multiple Distribution algorithm, predicted versus observed wall clock time.

a value for each of the c_i and for ah- (As an example, if Distributed NEPP consumed 30 CPU seconds on a

node during an application run that took 40 seconds wall clock time, then it spent 30 seconds on that node's

CPU during the application run, so that node's ai = 30/40 = 0.75.)

Figure 5.7 shows the relative error between predicted and observed wall clock time for the Multiple

Distribution algorithm. Figure 5.8 shows the error in standard CPU time for the same algorithm. Dots

represent individual trials, and lines show mean values: the dotted, dashed, and solid lines correspond to

queue sizes 1, 6, and 20, respectively• (Recall that the Simple Distribution algorithm is equivalent to the

Multiple Distribution algorithm with queue size 1.) The agreement between the model and experimental

data tends to be fairly good in general, though the model becomes slightly optimistic as the number of nodes
increases.

Figures 5.9 and 5.10 show the same data for the Fault-Tolerant Distribution algorithm, where figure 5.9
is the error in wall clock time and 5•10 is the error in CPU time. Again, dots represent individual trials and

the dotted, dashed, and solid lines show mean values for queue sizes 1, 6, and 20, respectively• Here the

model tends to overpredict the observed data, with the degree of error growing with queue size.

One possible reason for the model's increasing pessimism is a simplifying assumption that equation 4.13

makes. Here is the equation again, reproduced for convenience:

dt \ w_ /
(5.2)

44 CHAPTER 5. RESULTS AND ANALYSIS

100

Error, Pred. vs. Obs. CPU Time

t-q

;>

8O

60

40

20

0

-20

-40

-60

-80"

-100
0

Queue Size 1

Queue Size 6

Queue Size 20

I I I I I I

2 4 6 8 10 12

processors

Figure 5.8: Relative error in Multiple Distribution algorithm, predicted versus observed standard CPU time.

5.3. ANALYSIS OF MODEL'S PERFORMANCE 45

100
Error, Pred. vs. Obs. Execution Time

80

60

40

20

0

-20

-40

-60

-80

-100
0

......... Queue Size 1

..... Queue Size 6

-- Que_.

• . --._ .-, !.................... ,

I I I I I I

2 4 6 8 10 12

processors

Figure 5.9: Relative error in Fault-Tolerant Distribution algorithm, predicted versus observed wall clock
time.

46 CHAPTER 5. RESULTS AND ANALYSIS

100
Error, Pred. vs. Obs. CPU Time

I I l i I I

80

60

40

20

0

-20

-40

-60

-80

I

......... Queue Size 1

..... Queue Size 6 / • •

-- Qu .e_ _........ !

"C

-100 ' i , , i ,
0 2 4 6 8 10 12

processors

Figure 5.10: Relative error in Fault-Tolerant Distribution algorithm, predicted versus observed standard
CPU time.

5.3. ANALYSIS OF MODEL'S PERFORMANCE 47

In this equation, the ps_/w_ term represents the number of job results the nodes return to the host per unit

time, and z/pq represents the fraction of those results that are not redundant. In essence, this equation
assumes that redundant and non-redundant results from the nodes have a uniform distribution. However,

under the Fault-Tolerant Distribution algorithm, it is the first copy of any job's results that the host receives

that is non-redundant: all succeeding copies of that job's results are redundant. Furthermore, once the host

receives that first copy of the results, it stops making copies of that job, reducing the overall number of

redundant jobs. Since the error grows with queue size, suggesting that the problem may lie with overpredict-

ing the number of redundant results, incorporating a more accurate model of the queues and distribution of
redundant and non-redundant results would probably reduce the model's mean relative error.

Chapter 6

Additional Research and Conclusions

6.1 Additional Research Possibilities

This research has brought forth a number of interesting possibilities that deserve exploration. Here are some
of them.

6.1.1 Dequeuing Redundant Jobs

One of the factors that hurts the performance of the Fault-Tolerant Distribution algorithm is the fact that

the nodes process a large number of redundant jobs. One possibility that might increase the algorithm's

performance significantly is to have the host periodically compile a list of all jobs that are now redundant
and broadcast that list to the nodes. When the nodes receive the list, they check it against the jobs in their

job queues and dequeue any redundant jobs. The host would also have to dequeue the corresponding jobs

from its internal copies of the nodes' job queues so that it could tell how many jobs each node had it its

queue. Unfortunately, the relatively simple model section 4.1 presents is not sophisticated enough to predict

the Fault-Tolerant Distribution algorithm's performance if the host where to dequeue redundant jobs.

6.1.2 Distributing the Host's Duties

In Distributed NEPP, the host is both a bottleneck and a vulnerable point in the system: if the host fails,

the whole application will fail with it. Furthermore, the host's workload grows with the number of nodes;

eventually, the host will reach a point where it cannot handle any more nodes, at which point the application's

speedup curve will level off. It would be useful to distribute the host's tasks to improve fault-tolerance and

to avoid the bottleneck problem.

Any version of Distributed NEPP with a distributed host process still has to operate under the constraint

that only one machine in the cluster has access to the input and output files. Therefore, some portion of the

application will have to be centralized. However, it should be possible to minimize the application's exposure

to crashing due to a single-point failure by copying and distributing the input files and keeping local copies

of results so other programs could recover the output file after a critical failure.

The simplest way to modify Distributed NEPP would be to have multiple hosts, each with its own,

independent compliment of nodes. A fileserver process, located on the only machine with access to the files,
is responsible for copying and distributing the input files and writing results to the output files (figure 6.1.)

The user starts the fileserver process. The fileserver, in turn, starts the host processes and multicasts a

message to the hosts containing a complete copy of the input files and the number of hosts in the system.

Giving each host a copy of the input files ameliorates the limitation that only 1 machine can access the files.

Once the hosts have the input files from the fileserver, each chooses a range of input jobs to process based

on its own host number. For instance, if there are a total of J jobs to process, host i might choose the job

range starting at job number i [J/hJ and extending for the next [J/hJ jobs, where h is the number of hosts.

Each host also creates a table of all possible job ranges and marks each range as "NOT FINISHED".

48

6.1. ADDITIONAL RESEARCH POSSIBILITIES 49

Iq

input files [[

i output file []

machine 1]
]

(

N- Node Process Host Process

\
\

\

Fileserver Process

Figure 6.1: Multiple host modification to Distributed NEPP.

50 CHAPTER 6. ADDITIONAL RESEARCH AND CONCLUSIONS

The hosts start node processes on other machines and calculate the results to the jobs in their chosen

ranges just as in the current version of Distributed NEPP. When a host finishes its range of jobs, it writes
all the results for that job range to the temporary file space on the machine on which it is running, sends a

copy of the results to the fileserver, multicasts a message to the other hosts telling them that it has finished

with its job range, and chooses a new range of jobs to work on. Upon receiving the message telling them a

host has finished a particular range of jobs, all hosts, including the one that sent the message, mark that

particular range of jobs "FINISHED" in their job range tables.
When the fileserver receives results from a host, it puts those results into a sorted list of results to write

to the output file. If it already has a copy of the results, it simply discards them. Only after it has written

a host's results to the output file does the fileserver send the host a message confirming that fact. Once
the host receives confirmation from the fileserver, it is free to delete the results file for that particular range

from its local machine's temporary file space. This part of the protocol ensures that if the fileserver process

should crash, the hosts will accumulate results locally. Then, another program could go through the host

machines, collect the temporary files, and rebuild the output file the fileserver was trying to create.

Whenever a host has finished a range of jobs, or if it receives a message indicating that a different host

has finished the jobs it was working on, the host has to choose a new range of jobs to process. It repeatedly

applies a table-walk function to the current job range to search the job range table for a range marked "NOT

FINISHED". When it finds such a range, it begins processing those jobs. If a host searches the whole job

range table and finds only "FINISHED" jobs, it knows that all the jobs in the files it possesses are done,

leaving it free to send a "DIE" message to its nodes and exit. The table-walk function the host uses could

be as simple as taking the current job range and choosing the next higher one, or it could be modeled after

a sophisticated hash function designed to distribute the workload randomly and avoid having two hosts

arbitrarily choose the same job range. The only requirement for this function is that repeatedly applying it
will result in its visiting every range in the job range table once before eventually returning to the original

starting range [3].
By having only the hosts and the fileserver send messages back and forth, this scheme allows the commu-

nications traffic each host must handle to grow slowly with the number of nodes: if each host has n nodes,
then the host must communicate with its own n nodes, receive broadcasts from other hosts, and communi-

cate with the fileserver. If the total number of nodes in the system is N, then the number of processes with

which a given host must communicate will be n + log n N.

On the other hand, this approach is still vulnerable to host failure in the sense that each failed host

removes n node processors from the pool available to the application as a whole. One solution to the

problem might be to have each host periodically check in with a neighbor, so that if a host fails to check in

within a specified time frame, another host can signal the fileserver to kill the host that failed to check in,

if necessary, and to start a new host to replace it.

6.1.3 Recovering From a Node Crash

Under the Fault-Tolerant Distribution algorithm, if the host wishes to restart a failed node, it has to make a

system call to create the node process, send that process any initialization information it needs--the NEPP

design point in this case---and create an empty internal queue to mirror the new node's job queue. As soon

as the new node process signals the host with a "READY" message, the host will begin sending it work just

as it would with any other node.
Unfortunately, there does not appear to be a clean way for the host to detect the fact that a node has

crashed. One of the assumptions that underlie the Fault-Tolerant Distribution algorithm is that a node

could be running arbitrarily slowly, so it is difficult for the host to tell the difference between a very slow
node and one that has died. PVM includes library calls that allow one process to check to see if another is

still alive, but even having such library calls available still leaves the fundamental problem of when the host

should check. In other words, when does the host have enough evidence available to believe that a node is

dead, or at least to check on a particular node?

It may be that, with the Fault-Tolerant Distribution algorithm, the most practical approach would be to

have the host check for dead nodes with a frequency that depends on how long it takes to finish the particular

application and the amount of time necessary to check for and restart crashed nodes. For instance, if it takes

6.2. CONCLUSIONS 51

much longer to restart a node than it does to finish all the jobs in the input file, then the application will run

more quickly if it just decreases the number of processing nodes by 1 and continues running the application,

which the Fault-Tolerant Distribution algorithm does automatically. On the other hand, if the time to check
for and restart a dead node is much shorter than the time it would take to finish the application, then

recovering a dead node could have a significant impact on the total run time, and it will be worth the cost

of restarting it. Also, if the host has a relatively light workload, it may be able to check for dead nodes

while still efficiently coordinating the efforts of functional processing nodes, in which case it could check
more often.

6.2 Conclusions

Distributed NEPP meets the design goals for converting NEPP to run in parallel: the new program shows

parallel speedup in a distributed environment consisting of a set of network-connected workstations. While

others have proposed mechanisms that will allow an application to run in parallel in a distributed environment

[2] [15], improve the reliability of a distributed application [12], or both [13], the particular constraints of
this project suggest that implementing these approaches would be inefficient or overly complex. Instead,
Distributed NEPP uses a centralized control scheme that provides efficiency and fault-tolerance, and which

better fits the program's design constraints.
Distributed NEPP's design evolved through three successive algorithms: Simple Distribution, Multiple

Distribution, and Fault-Tolerant Distribution. A closer inspection shows that the Simple Distribution algo-

rithm is a special case of the Multiple Distribution algorithm. Furthermore, the Fault-Tolerant Distribution

algorithm incorporates the Multiple Distribution algorithm but adds redundancy in time leading to lower
wall-clock times in systems with large load variations and the ability to tolerate node failures, at the expense

of greater system-wide CPU usage.
Experiments show that the Multiple Distribution algorithm can run slower than the Simple Distribution

algorithm under certain load conditions. Analytical modeling bears out the observation: the Multiple
Distribution algorithm is much more sensitive to variations in processor speed across the system. In fact, the

model predicts that the minimum execution time for theMultiple Distribution algorithm varies directly with
the nodes' queue sizes, so large queues, which should speed up the algorithm by making it more efficient,

can have the opposite effect in a heterogeneous system. The Fault-Tolerant Distribution algorithm does not
suffer from the same minimum time constraints, although the redundancy it incorporates tends to make

it slower than the Simple Distribution algorithm unless the system load or processor speeds are extremely

unbalanced or a node fails.
Experimental tests of the analytical model indicate it has a tendency to slightly underpredict the CPU

usage and wall clock times of the Simple Distribution and Multiple Distribution algorithms; the model's

error grows with increasing numbers of processors. Furthermore, the model overpredicts the CPU and wall
clock times for the Fault-Tolerant Distribution algorithm. In this case, the model's error seems to arise

from simplifying assumptions it makes about the random distribution of redundant and non-redundant
information in the results the nodes send to the host, leading to an error that increases with both number

of processors and queue size.
Finally, a number of possibilities for enhancing Distributed NEPP and its associated algorithms arose

through the course of this research. Modifying the Fault-Tolerant Distribution algorithm to dequeue results
the host knows are redundant should improve the algorithm's performance while decreasing its impact on

system load. Also, giving Distributed NEPP the ability to recover and reintegrate faulty nodes rather than

simply rerouting work to other nodes would be a straightforward modification under the Fault-Tolerant

Distribution algorithm. Finally, it should be possible in the future to distribute the program's centralized

control functions, decreasing the potential for a single-point failure and to increasing the number of processors
Distributed NEPP can use before the control system saturates.

Appendix A

How To Use Distributed NEPP

Distributed NEPP uses the same format for its input files that the sequential version of NEPP uses. Unfor-

tunately, that format is too long and complex to reproduce here: please see [9] for a complete description of

the input file format.

Instead of prompting the user for the names of the various input files it needs, Distributed NEPP expects

to read the file names from a defaults file, a file of file names. The defaults file should have five lines, with

one file name per line, in this order:

1. input file name

2. map file name

3. thermal map file name

4. output file name

5. Instal code file name

If the engine the input file specifies does not use NEPP's thermal equilibrium package, leaving line 3 blank

will shorten the program's execution time by a few seconds because the host program will not attempt to
copy the file and send it to the nodes. (Please note, however, that the defaults file must still have five

lines--leave line 3 blank rather than deleting it altogether if the engine does not use the thermal code.)

Another optimization Distributed NEPP incorporates is that instead of immediately copying all input

files and sending them to the nodes, the host program first sends the nodes the names of the input files.
The nodes then try to open the input files themselves, an attempt that will work if both the host and nodes

are running under a network file system. If the nodes cannot open the input files, they send a message back

to the host requesting the files' contents. The host then opens the files, copies their contents, and sends

the contents to the nodes. The practical implication of this process is that putting a complete path name,

rather than just a relative path name, on each line of the defaults file may improve Distributed NEPP's

performance by a few seconds. Figure A.1 shows a sample defaults file.

-,_/dnepp/input/tbe.input

--_/dnepp/maps/tbe.maps

/usr/lib/nepp/small.btherm

_/dnepp/output/tbe.output

,,_/dnepp/maps/instal.maps

Figure A.I: Example defaults file for Distributed NEPP.

52

53

comment lines begin with a "#" character
machinel.somewhere.someuniversity.edu

machine2.somewhere.someuniversity.edu

machine3.somewhere.someuniversity.edu

Figure A.2: Example PVM hosts file.

The remaining file Distributed NEPP needs to run under PVM version 2.4 is a hoses file for PVM. The
hosts file tells PVM on which machines it may place Distributed NEPP's nodes. In its simplest form, the

hosts file is a list of machine names, with one name per line of the file. Please see [5] for a more complete

description of the hosts file format. Figure A.2 shows a sample PVM hosts file.

Running Distributed NEPP requires only three steps: start PVM, run the host program, and, when the

program has finished processing, stop PVM. To start PVM version 2.4, type "pvmd myhosts &", where
"myhosts" is the PVM hosts file, and the ampersand character, "&", directs Unix to put the PVM process

in the background, leaving the terminal free so the user can run other programs. Once the master PVM
daemon has started slave daemons on all the machines in the hosts file, it signals that fact by printing the

message "pvm is ready".
Once PVM is ready, the next step is to run the Distributed NEPP host program. The name of the host

program could vary from site to site, but, for the sake of this discussion, assume it is called "nepphost".

To run it, type "nepphost defaults.def,', where "defaults.def,' is the name of the Distributed NEPP defaults

file. "nepphost" automatically finds out how many machines are available to it, starts a copy of the node

program "neppnode" running on each available machine, and reads and processes the input file.
It is possible to run "nepphost" several times without restarting PVM. However, after the last Distributed

NEPP run, remove PVM by first typing "fg" to bring the PVM process to the foreground, so it can accept

commands from the keyboard, and then typing control-C ("*C") to kill the process.

Appendix B

The Distributed NEPP Source Code

Distributed NEPP is a complex application consisting of many interacting modules. Table B.1 provides a

summary of the Distributed NEPP source files and what they contain. The rest of this appendix provides
more detail on the files' contents.

Distributed NEPP uses a fairly sophisticated make file to give it the ability to compile and run on the

Sun SPARC and the IBM RS/6000, with the potential for adding more architectures in the future. The

Make file runs the shell script "set_system" to determine the system architecture and to set environment

variables so the code will compile properly; anyone installing Distributed NEPP on a new system should

edit "set_system" to reflect the correct system architecture. Also, the person installing Distributed NEPP

should edit all the path names in the Make file so it can find the various libraries and source files Distributed

NEPP requires.

The Distributed NEPP source code requires two libraries in addition to the standard C and Fortran

library files. The first is the library of PVM system calls [5]. Distributed NEPP also requires a library

containing NEPP Fortran routines [10], which it calls to perform the actual analysis. Please refer to the
documentation that comes with the PVM and NEPP packages for instructions on creating these libraries.

The file "nepphost.c" contains the majority of the code for Distributed NEPP's host program. The host

is event-driven: it generates an event number from the current system state and a list of event priorities.
Then it takes an action based on the even number. This event-driven approach allows the host to schedule

a complex sequence of actions. Furthermore, it lets different interfaces set different priorities; in particular,

"neppint.c" and "ipasint.c" each contain their own, individual routines to generate event numbers.

In contrast, the node program is relatively simple. "neppnode.c" contains most of the node's code. The

nodes do not use an event-driven design because they tend to behave in the same way regardless of what

the host does. Therefore, their code focuses more on simplicity than on flexibility. "neppnode.c" also has

a preprocessor symbol that determines, at compile time, the node's priority level under Unix; the nodes

do not give the end user the option of changing their priority levels at run time because, in an office-type
environment, there is a good chance that engineers will not want other users' node programs on their machines

if they know the other users could run the nodes at high priority and thereby slow down the engineer's own

programs.
"neppint.c" and "ipasint.c" provide front-end interfaces for Distributed NEPP. "neppint.c" creates the

stand-alone version of Distributed NEPP that Appendix A describes. "ipasint.c", on the other hand, creates

a version of Distributed NEPP that other programs, like IPAS [8], can use to perform engine analysis in

parallel.

The header files "parnepp.h" and "host.h" contain a number of switches to configure Distributed NEPP's

behavior. By changing preprocessor symbols in "host.h', the person compiling the code can determine

whether or not Distributed NEPP will print a message whenever it receives job results from a node. During

development, and for input files requiring lots of computation, providing the end user with feedback about

Distributed NEPP's progress allows the user to tell Distributed NEPP is still running and has not crashed.

"parnepp.h" includes several useful switches. It allows the person compiling the code to turn on Dis-

tributed NEPP's diagnostic printouts and internal error checking routines. It also includes a switch that will

54

55

Makefile

set_system

commo.h

Table B.I: Summary of Distributed NEPP source files.

file to direct Unix Make facility to compile and assemble Distributed NEPP

C shell script to set architecture-dependent environment variables

data structures for communications module

files.h

host.h

linkfix .h

parnepp.h

pvmuser.h

commo.c

data structures for file handling routines

data structures and declarations specific to host program

type definitions and declarations to interface between C and Fortran

general configuration and data structure header file

PVM header file, comes with PVM distribution package

communications module

dneppmain.c the C "main" function

files.c module allowing C code to manipulate Fortran files

ipasint.c interface between NEPP and IPAS

linkfix.c interface between C function calls and Fortran procedures

nepphost.c majority of the code for the Distributed NEPP host program

neppint.c user interface for stand-alone Distributed NEPP (as opposed to ipasint.c: interface between

NEPP and IPAS)

neppnode.c majority of the code for the Distributed NEPP node program

filehandler.f Fortran side of the interface that allows C routines to manipulate Fortran files

avceng.f routines to interface to NEPP Fortran library to perform engine analysis

tread.f routines allowing Fortran code to read the NEPP input files

56 APPENDIX B. THE DISTRIBUTED NEPP SOURCE CODE

cause Distributed NEPP to gather statistics on the wall clock and CPU time it consumes during each run,

simplifying the process of profiling the application's performance. It defines C data structures that mimic the

Fortran common blocks the NEPP library uses, so that Distributed NEPP can access common block vari-

ables. Finally, this header file controls the nodes' queue sizes, the threshold point at which the host regards a

node as being idle, the number of jobs the host packs into each assignment message, and whether or not the

host can send replicas of jobs to idle nodes: by editing this file, a developer can control whether Distributed

NEPP uses the Simple Distribution, Multiple Distribution, or Fault-Tolerant Distribution algorithm.
The file "commo.c" contains the communications routines that interface between Distributed NEPP and

PVM. Both the host and the nodes access the routines in this file; putting both host and node communications

routines in the same file helps to reduces programming errors in which the sender and the receiver expect

slightly different message formats. The header file "commo.h" provides access to the functions in this module.
The two files "linkfix.h" and "linkfix.c" provide the rest of Distributed NEPP with a system-independent

interface between C and Fortran. Developers who are porting Distributed NEPP to a new system or set of

compilers will probably have to modify these files to handle the new compilers' protocols for calling Fortran

subroutines and accessing Fortran variables from C.

'_les.h", '_les.c", and '_filehandler.f" provide a set of routines that allow C functions to .manipulate
Fortran's file units. Other Distributed NEPP routines use these functions to open and close NEPP input

and output files and to create temporary files that the Fortran subroutines in the NEPP library will use.
Finally, "avceng.f" and "tread.f" actas hooks into the NEPP library. Distributed NEPP calls the

subroutines in these modules to read design and off-design cases from the NEPP input files and to process

engine data.

Bibliography

[1] Bannister, Joseph A., and Kishor S. Trivedi. "Task Allocation in Fault-Tolerant Distributed Systems."

Acta Informatica. v 20 (1983): 261-81.

[2] Blake, Ben A. "Assignment of Independent Tasks to Minimize Completion Time." Software--Practice
and Experience. v 22 n 9 (September 1992): 723-34.

[3] Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. U.S.A.:
MIT Press and McGraw-Hill Book Company, 1990. 219-43.

[4] Cours, Jeffrey, and Brian Curlett. A Distributed Version of the NASA Engine Performance Program.
NASA TM-106208. Cleveland: NASA Lewis Research Center, 1993.

[5] Geist, A1, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam.
Parallel Virtual Machine. Version 2.4. Computer software. Available through Internet FTP from public

archive sites, 1992.

[6] --. Parallel Virtual Machine. Version 3.0. Computer software. Available through Internet FTP from

public archive sites, 1993. Beta test version.

[7] Gro§elj, Bojan. "Fault-Tolerant Distributed Simulation." 1991 Winter Simulation Conference Proceed-

ings. Piscataway: IEEE Service Center (December 1991): 637-41.

[8] Lavelle, T. M., R. M. Plencner, and J. A. Seidel. Concurrent Optimization of Airframe and Engine

Design Parameters. NASA TM-105908. Cleveland: NASA Lewis Research Center, 1992.

[9] Plencner, R. M., and C. A. Snyder. The Navy/NASA Engine Program (NNEP89)--A User's Manual.
NASA TM-105186. Cleveland: NASA Lewis Research Center, 1991.

[10] NEPP distribution: for availability contact Brian P. Curlett, Aeropropulsion Analysis Office,
NASA Lewis Research Center, Cleveland, OH, 44135. U.S. Phone (216) 977-7041. Internet E-mail

"curlett_hornet .lerc .nasa.gov".

[11] Sahni, Sartaj, and Yookun Cho. "Scheduling Independent Tasks with Due Times on a Uniform Processor

System." Journal of the Association for Computing Machinery. v 27 n 3 (July 1980): 551-63.

[12] Shatz, Sol M., Jia-Ping Wang, and Masanori Goto. "Task Allocation for Maximizing Reliability of

Distributed Computer Systems." IEEE Transactions on Computers. v 41 n 9 (September, 1992): 1156-

68.

[13] Smith, Reid G. "The Contract Net Protocol: High-Level Communication and Control in a Distributed
Problem Solver." IEEE Transactions on Computers. v C-29 n 12 (December 1980): 1104-13.

[14] Stone, Harold S. High Performance Computer Architecture, 3rd ed. Reading: Addison-Wesley, 1993.
158-62.

[15] Vaughan, J. G. "Static Performance of a Divide-and-Conquer Information-Distribution Protocol Sup-

porting a Load-Balancing Scheme." IEE Proceedings, Part E: Computers and Digital Techniques. v 139

n 6 (September 1992): 430-38.

57

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburdenforthiscollectionofinformationisestimatedtoaverage1hourperresponse,includingthetimeforrev=ewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation,includingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices,DirectorateforInformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA 22202-4302,andtotheOfficeofManagementendBudget,PaperworkReductionProject(0704-0188),Washington,DC 20503.

1. AGENCYUSE ONLY(Leaveblank) 2. REPORTDATE
March 1994

4. TITLEAND SUBTITLE

Design and Implementation of a Distributed Version of the

NASA Engine Performance Program

6. AUTHOR(S)

Jeffrey T. Cours

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

Ohio State University

Department of Electrical Engineering
2015 Nell Avenue

Columbus, Ohio 43210

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135 -3191

3. REPORTTYPEAND DATESCOVERED

Final Contractor Report

5. FUNDINGNUMBERS

WU-505-69-50

C-NAG3-1369

8. PERFORMINGORGANIZATION
REPORTNUMBER

E-8619

10. SPONSORING/MONITORING
AGENCYREPORTNUMBER

NASA CR-194475

11. SUPPLEMENTARYNOTES

Project Manager, Brian P. Curlett, Aeropropulsion Analysis Office, organization code 2410, NASA Lewis Research

Center, (216) 977-7041.

12a. DISTRIBUTION/AVAILABILITYSTATEMENT 12b. DISTRIBUTIONCODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT(Maximum200 words)

Distributed NEPP is a new version of the NASA Engine Performance Program that runs in parallel on a collection of

Unix workstations connected through a network. The program is fault-tolerant, efficient, and shows significant

speedup in a multi-user, heterogeneous environment. This report describes the issues involved in designing Distrib-

uted NEPP, the algorithms the program uses, and the performance Distributed NEPP achieves. It develops an

analytical model to predict and measure the performance of the Simple Distribution, Multiple Distribution, and

Fault-Tolerant Distribution algorithms that Distributed NEPP incorporates. Finally, the appendices explain how to

use Distributed NEPP and document the organization of the program's source code.

14. SUBJECTTERMS

Distributed processing; Parallel programming; Cycle analysis; Engine performance

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

118. SECURITYCLASSIFICATION
OFTHIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OFABSTRACT

Unclassified

15. NUMBEROF PAGES
59

16. PRICECODE

A04
20. LIMITATIONOF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

